目录
- 1. 数据预处理与特征工程
-
- 2. 大模型构建与训练
-
- 3. 术前预测系统
-
- 4. 术中实时调整系统
-
- 5. 术后护理系统
-
- 6. 麻醉方案优化系统
-
1. 数据预处理与特征工程
伪代码 - 数据清洗与特征处理
def DataPreprocessing(raw_data):cleaned_data = RemoveMissingValues(raw_data) cleaned_data = FilterOutliers(cleaned_data) normalized_data = MinMaxScaler(cleaned_data) encoded_data = OneHotEncode(normalized_data) fusion_data = Concatenate(encoded_data, ImageFeatures(CT_scans), TextFeatures(medical_notes)) return fusion_data
数据预处理流程图
2. 大模型构建与训练
伪代码 - 模型训练
def TrainStonePredictionModel(preprocessed_data):model = TransformerModel(input_dim=feature_length,num_layers=12,heads=8,dropout=0.3)train_loader, val_loader = SplitDataset(preprocessed_data, ratio=0.8)criterion = CrossEntropyLoss()optimizer = AdamOptimizer(learning_rate=1e-4)for epoch in range(100):for batch in train_loader:predictions = model.forward(batch)loss = criterion(predictions, batch.labels)optimizer.backward(loss)optimizer.step()val_loss = ValidateModel(model, val_loader)SaveCheckpoint(model, val_loss)return model
模型训练流程图