当前位置: 首页 > news >正文

Spark处理过程-转换算子

RDD的处理过程

Spark使用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作处理。RDD的处理过程如图所示;

RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供给下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会真正被计算处理。

这里有两点注意:

延迟。RDD中所有的转换都是延迟的,它们并不会直接计算结果。相反,他们只是记住这些应用到基础数据集上的转换动作。只有当发生要求返回结果给driver的动作时,这些转换才会真正运行。

血缘关系。一个RDD运算之后,会产生新的RDD。

转换算子

转换算子用于对 RDD 进行转换操作,生成一个新的 RDD。转换操作是惰性的,即当调用转换算子时,Spark 并不会立即执行计算,而是记录下操作步骤,直到遇到行动算子时才会触发实际的计算。

从格式和用法上来看,它就是集合对象的方法。

以下是一些常见的转换算子:

1.map 算子

作用:对 RDD 中的每个元素应用给定的函数 f,将每个元素转换为另一个元素,最终返回一个新的 RDD。这个函数 f 接收一个输入类型为 T 的元素,返回一个类型为 U 的元素。

格式:def map[U: ClassTag](f: T => U): RDD[U]

import org.apache.spark.{SparkConf, SparkContext}
object MapExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("MapExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq(1, 2, 3, 4))val newRdd = rdd.map(x => x * 2)newRdd.collect().foreach(println)sc.stop()}
}
2.filter 算子

作用:筛选出 RDD 中满足函数 f 条件(即 f 函数返回 true)的元素,返回一个新的 RDD,新 RDD 中的元素类型与原 RDD 相同。

格式:def filter(f: T => Boolean): RDD[T]

import org.apache.spark.{SparkConf, SparkContext}
object FilterExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("FilterExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq(1, 2, 3, 4))val newRdd = rdd.filter(x => x % 2 == 0)newRdd.collect().foreach(println)sc.stop()
}}
3.flatMap算子

作用:对 RDD 中的每个元素应用函数 f,函数 f 返回一个可遍历的集合,然后将这些集合中的元素扁平化合并成一个新的 RDD。

格式:def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

import org.apache.spark.{SparkConf, SparkContext}
object FlatMapExample {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("FlatMapExample").setMaster("local[*]")val sc = new SparkContext(conf)val rdd = sc.parallelize(Seq("hello world", "spark is great"))val newRdd = rdd.flatMap(x => x.split(" "))newRdd.collect().foreach(println)sc.stop()}}
4.reduceByKey 算子

reduceByKey 是 Spark 中用于处理键值对(Key - Value)类型 RDD 的一个重要转换算子。它的核心作用是对具有相同键的所有值进行聚合操作,通过用户提供的聚合函数将这些值合并成一个结果,从而实现数据的归约和统计。例如统计每个键出现的次数、计算每个键对应值的总和、平均值等。

格式

def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

参数说明:

func: (V, V) => V:这是一个二元函数,用于定义如何对相同键的值进行聚合。函数接收两个类型为 V 的值,返回一个类型为 V 的结果。例如,若要对相同键的值进行求和,func 可以是 (x, y) => x + y。

numPartitions: Int(可选):指定结果 RDD 的分区数。如果不提供该参数,将使用默认的分区数。

以下是一个使用 reduceByKey 计算每个单词出现次数的示例:

import org.apache.spark.{SparkConf, SparkContext}
object ReduceByKeyExample {def main(args: Array[String]): Unit = {// 创建 SparkConf 对象val conf = new SparkConf().setAppName("ReduceByKeyExample").setMaster("local[*]")// 创建 SparkContext 对象val sc = new SparkContext(conf)// 创建一个包含单词的 RDDval words = sc.parallelize(List("apple", "banana", "apple", "cherry", "banana", "apple"))// 将每个单词映射为 (单词, 1) 的键值对val wordPairs = words.map(word => (word, 1))// 使用 reduceByKey 计算每个单词的出现次数val wordCounts = wordPairs.reduceByKey(_ + _)// 输出结果wordCounts.collect().foreach(println)// 停止 SparkContextsc.stop()}
}

相关文章:

  • 运行Spark程序-在Spark-shell——RDD
  • 第四章 部件篇之按钮矩阵部件
  • 前端如何应对精确数字运算?用BigNumber.js解决JavaScript原生Number类型在处理大数或高精度计算时的局限性
  • JVM Optimization Learning(七)-GC
  • JVM——方法内联之去虚化
  • 哈希表:数据世界的超级索引
  • 【速通RAG实战:进阶】10.RAG 进化论:Advanced与Modular架构解锁智能问答新维度
  • Kafka 如何保证消息顺序性
  • 关于IDE的相关知识之二【插件推荐】
  • Kubernetes Horizontal Pod Autosscaler(HPA)核心机制解析
  • 数据结构基础--蓝桥杯备考
  • 【自学30天掌握AI开发】第1天 - 人工智能与大语言模型基础
  • 《医院网络安全运营能力成熟度评估指南》(试行版)研究解读
  • MapReduce基本介绍
  • 2025年的电脑能装win7吗_2025年组装电脑装win7详细图文教程
  • 2025最新出版 Microsoft Project由入门到精通(七)
  • BFS算法篇——打开智慧之门,BFS算法在拓扑排序中的诗意探索(下)
  • MapReduce打包运行
  • 拓扑排序+dp
  • 【机器学习赋能的智能光子学器件系统研究与应用】
  • 人民日报任平:从汽车产销、外贸大盘看中国经济前景
  • 图讯丨习近平出席中国-拉美和加勒比国家共同体论坛第四届部长级会议开幕式
  • 书法需从字外看,书法家、学者吴本清辞世
  • 来伊份深夜回应“粽子中吃出疑似创可贴”:拿到实物后会查明原因
  • A股三大股指集体高开
  • 云南多地突查公职人员违规饮酒:公安局门口开展酒精吹气测试