当前位置: 首页 > news >正文

三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

完整代码私信回复三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

一、引言

1、研究背景和意义

在现代数据科学领域,时间序列预测一直是研究的热点和难点,尤其是在金融、气象、能源等领域,精确的多变量时间序列预测对于决策支持、风险评估等具有重要意义。随着人工智能技术的发展,深度学习模型如Transformer和BiLSTM在处理序列数据方面显示出了强大的能力。Transformer模型通过自注意力机制有效地捕捉数据中的长短期依赖关系,而BiLSTM模型通过其双向的循环结构,能够更好地理解序列数据的上下文信息。然而,这些模型在训练过程中仍然面临优化难题,如梯度消失、局部最优等问题,这些问题直接影响模型的预测性能和稳定性。

2、研究现状

目前,虽然Transformer和BiLSTM模型在单一任务上的应用已较为成熟,但将两者结合用于多变量回归预测的研究仍相对较少。此外,传统的优化器如SGD、Adam等在处理复杂模型时,往往难以达到理想的优化效果。近年来,三角拓扑聚合优化器(TTAO)因其独特的拓扑结构和高效的优化能力,在多个领域展示了优越的性能。TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程,从而提高了模型的预测精度和泛化能力。

3、本文工作

针对现有研究的不足,本文提出了一种新的预测模型——TTAO-Transformer-BiLSTM。该模型结合了Transformer编码器和BiLSTM层,利用TTAO优化器进行模型训练,以达到更好的预测效果。具体而言,Transformer编码器用于捕捉数据中的长短期依赖关系,BiLSTM层用于进一步提炼时间序列的复杂特征,TTAO优化器则用于提升模型的训练效率和稳定性。通过在多个数据集上的实验验证,本文所提模型在预测精度和稳定性方面均优于传统方法。

二、数据与方法

1、数据准备

在本研究中,为了提高模型的预测性能,我们对原始数据进行了预处理,归一化处理。

2、模型构建
2.1、Transformer编码器在模型中的作用与设计

Transformer编码器通过自注意力机制,使得模型能够关注到输入序列中的所有元素,而不仅仅是前一个或后一个元素。这种机制特别适合于捕捉时间序列数据中的长短期依赖关系。在我们的模型中,Transformer编码器被设计用来处理多变量时间序列数据,通过多头的自注意力机制,模型能够从不同角度捕捉数据中的复杂关系。

2.2、BiLSTM层在捕捉时间序列依赖关系中的功能

BiLSTM层通过其双向的循环结构,能够同时利用过去和未来的上下文信息来预测当前时间步的输出。这使得BiLSTM在处理时间序列数据时具有独特的优势。在我们的模型中,BiLSTM层被添加到Transformer编码器的输出之上,以进一步提炼时间序列的复杂特征,提高模型的预测性能。

2.3、TTAO优化器的原理及其在模型优化中的优势

TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程。与传统的优化器相比,TTAO优化器在处理复杂模型时,能够更好地避免局部最优解,提高模型的泛化能力。在我们的模型中,TTAO优化器被用于训练整个TTAO-Transformer-BiLSTM模型,通过高效的参数优化,提升模型的预测精度和稳定性。

3、模型训练与验证

在模型训练过程中,我们采用了交叉验证的方法来评估模型的性能和稳定性。具体而言,我们将数据集划分为训练集、验证集和测试集,通过在训练集上训练模型,在验证集上调优超参数,最终在测试集上评估模型的预测性能。为了进一步提升模型的泛化能力,我们还采用了数据增强技术,包括随机噪声添加和时间序列窗滑动等。此外,我们还对模型的超参数进行了细致的调整,包括学习率、批次大小、正则化系数等,以达到最佳的预测效果。

三、实验结果

1、实验设置

为了全面评估TTAO-Transformer-BiLSTM模型的性能,评估指标包括均方误差(MSE)、均方根误差(RMSE)和绝对误差(MAE),这些指标能够量化模型的预测误差,从而评估模型的性能。

2、结果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、结论与展望

1、研究总结

本文提出了一种新的多变量回归预测模型——TTAO-Transformer-BiLSTM,通过结合Transformer编码器、BiLSTM层和TTAO优化器,实现了高效的预测。

2、研究展望

尽管TTAO-Transformer-BiLSTM模型在多变量回归预测上取得了良好的效果,但仍有改进的空间。未来的研究可以考虑引入更多的数据增强技术,进一步提升模型的泛化能力。此外,探索更高效的优化算法和模型结构,也是未来研究的重要方向。具体而言,可以研究如何将TTAO优化器与其他先进的优化算法结合,以提高模型的训练效率和预测性能;还可以研究如何将Transformer编码器和BiLSTM层与其他先进的深度学习模型结合,以捕捉更复杂的时间序列特征。


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end


%%  参数设置
options = trainingOptions('adam', ...           % Adam 梯度下降算法
         'MaxEpochs', 100, ...                  % 最大训练次数
         'MiniBatchSize',64, ...                %批大小,每次调整参数前所选取的样本数量
         'InitialLearnRate', Positions(1), ...  % 初始学习率 best_lr
         'LearnRateSchedule', 'piecewise', ...  % 学习率下降
         'LearnRateDropFactor', 0.5, ...        % 学习率下降因子
         'LearnRateDropPeriod', 50, ...         % 经过训练后 学习率
         'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
         'ValidationPatience', Inf, ...         % 关闭验证
         'L2Regularization', Positions(3), ...  % 正则化参数
         'Verbose', false);

%%  模型训练
net = trainNetwork(p_train, t_train, lgraph, options);

%%  仿真预测
t_sim = predict(net, p_train);

%%  计算适应度
fitness = sqrt(sum((t_sim - t_train).^2) ./ length(t_sim));

end

相关文章:

  • SQL-leetcode—1581. 进店却未进行过交易的顾客
  • 怎么才能DeepSeek批量写作和内容导出?
  • WebSocket 握手过程
  • 【实战篇】室内设计师如何利用 DeepSeek 做设计:从灵感到落地的全方位指南
  • 软件可靠性基础知识
  • 机器学习 - 贪心算法、前向搜索、后向搜索
  • NPDP学习笔记 -产品经理(第二版)-第七章 产品创新管理
  • openGauss 3.0 数据库在线实训课程12: 学习逻辑结构:模式管理
  • 架构设计系列(二):CI/CD
  • 五、AIGC大模型_02大模型学习重点
  • 基于若依开发的工程项目管系统开源免费,用于工程项目投标、进度及成本管理的OA 办公开源系统,非常出色!
  • 基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试
  • Linux 内核 IPoIB 驱动中 sysfs 属性冲突问题的分析与解决
  • 全面了解HTTP(一)
  • 数据结构之二叉树
  • mysql数据被误删的恢复方案
  • vs2022支持.netframework4.0
  • C++之线程
  • phpipam1.7安装部署
  • 语义源的速率-失真特征(Rate-Distortion Characteristics of Semantic Sources)在语义通信中的理论分析
  • 【社论】法治是对民营经济最好的促进
  • 五一去哪儿|外国朋友来中国,“买买买”成为跨境旅游新趋势
  • “光荣之城”2025上海红色文化季启动,红色主题市集亮相
  • 北京银行一季度净赚超76亿降逾2%,不良贷款率微降
  • 铁路五一假期运输今日启动,预计发送旅客1.44亿人次
  • 《中国奇谭》首部动画电影《浪浪山小妖怪》定档8月2日