【项目日记】高并发内存池--page cache
目录
申请内存
释放内存
PageCache代码框架
windows下直接向堆申请页为单位的大块内存
申请内存
1.当central cache向page cache申请内存时,page cache先检查对应位置有没有span,如果没有则向更大页寻找一个span,如果找到则分裂成两个。比如,申请的是4页的span,4页后面没有挂span,则向后面寻找更大的span,假设在10页page位置找到一个span,则将10页page span分裂为一个4页page span和一个6页page span。
2.如果找到_spanList[128]都没有合适的span,则向系统使申请128页的page span挂在自由链表中,再重复1中的过程。
3.需要注意的是,central cache和page cache的核心结构都是spanlist的哈希桶,但是它们有本质的区别,central cache中的哈希桶,是按跟thread cache一样的大小对齐关系映射的,它的spanlist中挂的span中的内存都被按映射关系切好链接成小块内存的自由链表。而page cache中的spanlist是按下标桶号映射的,也就是说第i号桶挂的span都是i页内存。
Span* PageCache::NewSpan(size_t k)
{
	assert(k > 0);
	//大于128 page直接向堆申请
	if (k > NPAGES - 1)
	{
		void* ptr = SystemAlloc(k);
		//Span* span = new Span;
		Span* span = _spanPool.New();
		span->_pageId = (PAGE_ID)ptr >> PAGE_SHIFT;
		span->_n = k;
		//_idSpanMap[span->_pageId] = span;
		_idSpanMap.set(span->_pageId, span);
		return span;
	}
	//先检查第k个桶里面有没有span
	if (!_spanlists[k].Empty())
	{
		Span* kSpan = _spanlists[k].PopFront();
		//建立id和span的映射,方便central cache回收小块内存时,查找对应的span
		for (size_t i = 0; i < kSpan->_n; i++)
		{
			//_idSpanMap[kSpan->_pageId + i] = kSpan;
			_idSpanMap.set(kSpan->_pageId + i, kSpan);
		}
		return kSpan;
	}
	//检查一下后面的桶里面有没有span,如果有可以把它进行切分
	for (size_t i = k + 1; i < NPAGES; i++)
	{
		//把当前这个桶切分成一个k页的span和一个n-k页的span
		//k页的span返回给central cache
		//n-k页span挂到第n-k桶中去
		if (!_spanlists[i].Empty())
		{
			Span* nSpan = _spanlists[i].PopFront();
			//Span* kSpan = new Span;
			Span* kSpan = _spanPool.New();
			//在nSpan的头部切一个k页下来
			//k页span返回
			//nSpan再挂到对应映射的位置
			kSpan->_pageId = nSpan->_pageId;
			kSpan->_n = k;
			nSpan->_pageId += k;
			nSpan->_n -= k;
			_spanlists[nSpan->_n].PushFront(nSpan);
			//存储nSpan的首尾页号跟nSpan映射,方便page cache回收内存
			//进行合并查找
			/*_idSpanMap[nSpan->_pageId] = nSpan;
			_idSpanMap[nSpan->_pageId + nSpan->_n - 1] = nSpan;*/
			_idSpanMap.set(nSpan->_pageId, nSpan);
			_idSpanMap.set(nSpan->_pageId + nSpan->_n - 1, nSpan);
			//建立id和span的映射,方便central cache回收小块内存时,查找对应的span
			for (size_t i = 0; i < kSpan->_n; i++)
			{
				//_idSpanMap[kSpan->_pageId + i] = kSpan; 
				_idSpanMap.set(kSpan->_pageId + i, kSpan);
			}
			return kSpan;
		}
	}
	//走到这个位置说明没有大页的span了
	//这个时候就去找堆要一个128页的span
	//Span* bigSpan = new Span;
	Span* bigSpan = _spanPool.New();
	void* ptr = SystemAlloc(NPAGES - 1);
	bigSpan->_pageId = (PAGE_ID)ptr >> PAGE_SHIFT;
	bigSpan->_n = NPAGES - 1;
	_spanlists[bigSpan->_n].PushFront(bigSpan);
	return NewSpan(k);
} 
central cache中用的是一把大锁,而不是桶锁,用桶锁可能导致频繁加锁解锁(在central cache中不是一次只访问某一个桶,可能这个桶里没有page,就会向更大的page桶去要),这样导致效率低。
释放内存
如果central cache释放回一个span,则依次寻找span的前后page id(页号)的span是否空闲,如果有就合并,合并出更大的页,如果可以合并继续向前寻找。这样就可以将切小的内存合并收缩成大的span,减少内存碎片。

void PageCache::ReleaseSpanToPageCache(Span* span)
{
	//大于128page的直接还给堆
	if (span->_n > NPAGES - 1)
	{
		void* ptr = (void*)(span->_pageId << PAGE_SHIFT);
		SystemFree(ptr);
		//delete span;
		_spanPool.Delete(span);
		return;
	}
	//对span前后的页,尝试进行合并,缓解内存碎片的问题
	while (1)
	{
		PAGE_ID prev_Id = span->_pageId - 1;
		//auto ret = _idSpanMap.find(prev_Id);
		前面的页号没有,不合并了
		//if (ret == _idSpanMap.end())
		//{
		//	break;
		//}
		auto ret = (Span*)_idSpanMap.get(prev_Id);
		if (ret == nullptr)
		{
			break;
		}
		//前面相邻页的span在使用,不合并了
		Span* prevSpan = ret;
		if (prevSpan->_isUse == true)
		{
			break;
		}
		// 合并出超过128页的span没办法管理,不合并了
		if (prevSpan->_n + span->_n > NPAGES - 1)
		{
			break;
		}
		span->_pageId = prevSpan->_pageId;
		span->_n += prevSpan->_n;
		_spanlists[prevSpan->_n].Erase(prevSpan);
		//delete prevSpan; // 这里释放的是new出来的span对象,而不是对应的内存,
						 //内存是SystemAlloc申请出来的,应该由SystemFree释放
		_spanPool.Delete(prevSpan);
	}
	//向后合并
	while (1)
	{
		PAGE_ID nextId = span->_pageId + span->_n;
		/*auto ret = _idSpanMap.find(nextId);
		if (ret == _idSpanMap.end())
		{
			break;
		}*/
		auto ret = (Span*)_idSpanMap.get(nextId);
		if (ret == nullptr)
		{
			break;
		}
		Span* nextSpan = ret;
		if (nextSpan->_isUse == true)
		{
			break;
		}
		if (span->_n + nextSpan->_n > NPAGES - 1)
		{
			break;
		}
		span->_n += nextSpan->_n;
		_spanlists[nextSpan->_n].Erase(nextSpan);
		//delete nextSpan;
		_spanPool.Delete(nextSpan);
	}
	_spanlists[span->_n].PushFront(span);
	span->_isUse = false;
	/*_idSpanMap[span->_pageId] = span;
	_idSpanMap[span->_pageId + span->_n - 1] = span;*/
	_idSpanMap.set(span->_pageId, span);
	_idSpanMap.set(span->_pageId + span->_n - 1, span);
} 
另外,我们在查找地址所对应的span时,可以通过_idSpanMap中去找。这个_idSpanMap我们会在PageCache中申请和切分大块Span时会维护。
Span* PageCache::MapObjectToSpan(void* obj) 
{
	PAGE_ID id = ((PAGE_ID)obj >> PAGE_SHIFT);
	//std::unique_lock<std::mutex> lock(_pageMtx);
	/*auto ret = _idSpanMap.find(id);
	if (ret != _idSpanMap.end())
	{
		return ret->second;
	}
	else
	{
		assert(false);
		return nullptr;
	}*/
	auto ret = (Span*)_idSpanMap.get(id);
	assert(ret != nullptr);
	return ret;
} 
PageCache代码框架
//page cache也用单例模式
class PageCache
{
public:
	static PageCache* GetInstance()
	{
		return &_sInst;
	}
	//获取从对象到span的映射
	Span* MapObjectToSpan(void* obj);
	//释放空闲span回到Pagecache,并合并相邻的span
	void ReleaseSpanToPageCache(Span* span);
	//获取一个K页的span
	Span* NewSpan(size_t k);
	std::mutex _pageMtx;
private:
	PageCache() {}
	PageCache(const PageCache&) = delete;
	PageCache& operator=(const PageCache&) = delete;
	SpanList _spanlists[NPAGES];
	ObjectPool<Span> _spanPool; //定长内存池,用它来new出Span对象,而不是用系统接口new
	//std::unordered_map<PAGE_ID, Span*> _idSpanMap;
	TCMalloc_PageMap1<32 - PAGE_SHIFT> _idSpanMap;
	static PageCache _sInst;
}; 
windows下直接向堆申请页为单位的大块内存
// 直接去堆上按页申请空间
inline static void* SystemAlloc(size_t kpage)
{
#ifdef _WIN32
	void* ptr = VirtualAlloc(0, kpage * (1 << PAGE_SHIFT), MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
	// linux下brk mmap等
#endif
	if (ptr == nullptr)
		throw std::bad_alloc();
	return ptr;
}
inline static void SystemFree(void* ptr)
{
#ifdef _WIN32
	VirtualFree(ptr, 0, MEM_RELEASE);
#else
	// sbrk unmmap等
#endif
} 
 
 
                