当前位置: 首页 > news >正文

SCINet 训练代码修改

不多说,放代码

import os
import sys
import time
import glob
import numpy as np
import torch
import utils
from PIL import Image
import logging
import argparse
import torch.utils
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.autograd import Variablefrom model import *
from multi_read_data import MemoryFriendlyLoaderparser = argparse.ArgumentParser("SCI")
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--cuda', default=True, type=bool, help='Use CUDA to train model')
parser.add_argument('--gpu', type=str, default='0', help='gpu device id')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--epochs', type=int, default=100, help='epochs')
parser.add_argument('--lr', type=float, default=0.0003, help='learning rate')
parser.add_argument('--stage', type=int, default=3, help='epochs')
parser.add_argument('--save', type=str, default='EXP/', help='location of the data corpus')args = parser.parse_args()os.environ["CUDA_VISIBLE_DEVICES"] = args.gpuargs.save = args.save + '/' + 'Train-{}'.format(time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
model_path = args.save + '/model_epochs/'
os.makedirs(model_path, exist_ok=True)
image_path = args.save + '/image_epochs/'
os.makedirs(image_path, exist_ok=True)log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)logging.info("train file name = %s", os.path.split(__file__))if torch.cuda.is_available():if args.cuda:torch.set_default_tensor_type('torch.cuda.FloatTensor')if not args.cuda:print("WARNING: It looks like you have a CUDA device, but aren't " +"using CUDA.\nRun with --cuda for optimal training speed.")torch.set_default_tensor_type('torch.FloatTensor')
else:torch.set_default_tensor_type('torch.FloatTensor')def save_images(tensor, path):image_numpy = tensor[0].cpu().float().numpy()image_numpy = (np.transpose(image_numpy, (1, 2, 0)))im = Image.fromarray(np.clip(image_numpy * 255.0, 0, 255.0).astype('uint8'))im.save(path, 'png')def main():if not torch.cuda.is_available():logging.info('no gpu device available')sys.exit(1)np.random.seed(args.seed)cudnn.benchmark = Truetorch.manual_seed(args.seed)cudnn.enabled = Truetorch.cuda.manual_seed(args.seed)logging.info('gpu device = %s' % args.gpu)logging.info("args = %s", args)model = Network(stage=args.stage)model.enhance.in_conv.apply(model.weights_init)model.enhance.conv.apply(model.weights_init)model.enhance.out_conv.apply(model.weights_init)model.calibrate.in_conv.apply(model.weights_init)model.calibrate.convs.apply(model.weights_init)model.calibrate.out_conv.apply(model.weights_init)model = model.cuda()optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=3e-4)MB = utils.count_parameters_in_MB(model)logging.info("model size = %f", MB)print(MB)train_low_data_names = '/root/autodl-tmp/our485/low'TrainDataset = MemoryFriendlyLoader(img_dir=train_low_data_names, task='train')test_low_data_names = '/root/autodl-tmp/eval15/low'TestDataset = MemoryFriendlyLoader(img_dir=test_low_data_names, task='test')# 创建 CUDA 随机数生成器g = torch.Generator(device='cuda')g.manual_seed(args.seed)train_queue = torch.utils.data.DataLoader(TrainDataset, batch_size=args.batch_size,pin_memory=True, num_workers=0, shuffle=True, generator=g)test_queue = torch.utils.data.DataLoader(TestDataset, batch_size=1,pin_memory=True, num_workers=0, shuffle=True, generator=g)total_step = 0for epoch in range(args.epochs):model.train()losses = []for batch_idx, (input, _) in enumerate(train_queue):total_step += 1input = Variable(input, requires_grad=False).cuda()optimizer.zero_grad()loss = model._loss(input)loss.backward()nn.utils.clip_grad_norm_(model.parameters(), 5)optimizer.step()losses.append(loss.item())logging.info('train-epoch %03d %03d %f', epoch, batch_idx, loss)logging.info('train-epoch %03d %f', epoch, np.average(losses))utils.save(model, os.path.join(model_path, 'weights_%d.pt' % epoch))if epoch % 50 == 0 and total_step != 0:logging.info('train %03d %f', epoch, loss)model.eval()with torch.no_grad():for _, (input, image_name) in enumerate(test_queue):input = Variable(input, volatile=True).cuda()# image_name = image_name[0].split('\\')[-1].split('.')[0]image_name_str = image_name[0]# 使用上述方法处理 image_name_strimage_name = os.path.basename(image_name_str)  # 这里使用 os.path.basename 方法image_name = image_name.split('.')[0]  # 如果还需要去掉文件扩展名,可以再进行一次分割illu_list, ref_list, input_list, atten = model(input)u_name = '%s.png' % (image_name + '_' + str(epoch))u_path = os.path.join(image_path, u_name)  save_images(ref_list[0], u_path)if __name__ == '__main__':main()

注意事项:1:随机数生成器要做cuda上
2.保存路径要修改好。

相关文章:

  • cmake qt 项目编译(win)
  • npm下载插件无法更新package.json和package-lock.json文件的解决办法
  • clickhouse - 重新建表覆盖旧表-解决分区时间错误问题-197001
  • AI内容检测的技术优势与应用场景
  • Java注解
  • Linux开发工具【上】
  • win11共享打印机主机设置
  • 使用 Python 监控系统资源
  • LeetCode 解题思路 45(分割等和子集、最长有效括号)
  • 程序员学商务英语之Shipment Claim 运输和索赔
  • LeetCode 每日一题 2025/4/28-2025/5/4
  • Go语言——string、数组、切片以及map
  • 代码mark:脚本获取包含全角字符的字符串的长度
  • Grafana-新增用户
  • 【AI】如何自己训练AI大模型
  • 20250506| 物化视图学习
  • 【Python】--实现多进程
  • FastComposer论文问题与解决
  • 信息论06:信息增益——量化不确定性的艺术与科学
  • STM32H743单片机实现ADC+DMA多通道检测
  • 巴国家安全委员会授权军方自主决定对印反击措施
  • 巴称击落多架印度“阵风”战机,专家:小规模冲突巴空军战力不落下风
  • 经济日报:落实落细更加积极的财政政策
  • 原四川省农村信用社联合社党委副书记、监事长杨家卷被查
  • 江西省文化和旅游厅厅长梅亦已任省委宣传部副部长
  • 国铁集团:铁路五一假期旅客发送量累计已超1亿人次