第100+40步 ChatGPT学习:R语言实现多轮建模
回顾一下什么叫多轮建模:
要综合判断一个模型好不好,一次随机抽样是不行的,得多次抽样建模,看看整体的性能如何才行(特别是对于这种小训练集)。
所以我的思路是,随机抽取训练集和验证集2000次(随你),然后构建2000个ML模型(譬如2000个朴素贝叶斯),得出2000批性能参数。那怎么实现呢,下面上R语言代码,以朴素贝叶斯为例:
library(caret)
library(e1071)
library(pROC)# 加载数据集
dataset <- read.csv("X disease code fs.csv")
cat("数据集加载成功。\n")
X <- dataset[, 2:14]
Y <- dataset[, 1]# 初始化结果数据框
results <- data.frame(Random_Seed = integer(),Sensitivity_Test = numeric(),Specificity_Test = numeric(),AUC_Test = numeric(),Sensitivity_Train = numeric(),Specificity_Train = numeric(),AUC_Train = numeric()
)
cat("结果数据框初始化完成。\n")# 遍历随机种子
for (n in 1:2000) {set.seed(n)cat("设置随机种子为", n, "\n")# 划分数据集trainIndex <- createDataPartition(Y, p = 0.7, list = FALSE)X_train <- X[trainIndex, ]X_test <- X[-trainIndex, ]y_train <- Y[trainIndex]y_test <- Y[-trainIndex]cat("数据集划分为训练集和测试集。\n")# 标准化特征preProcValues <- preProcess(X_train, method = c("center", "scale"))X_train <- predict(preProcValues, X_train)X_test <- predict(preProcValues, X_test)cat("特征标准化完成。\n")# 训练朴素贝叶斯模型model <- naiveBayes(X_train, y_train)cat("朴素贝叶斯模型训练完成。\n")# 进行预测y_pred <- predict(model, X_test)y_train_pred <- predict(model, X_train)cat("完成对训练集和测试集的预测。\n")# 计算混淆矩阵cm_test <- confusionMatrix(as.factor(y_pred), as.factor(y_test))cm_train <- confusionMatrix(as.factor(y_train_pred), as.factor(y_train))cat("混淆矩阵计算完成。\n")# 计算AUC分数auc_test <- auc(as.numeric(y_test), as.numeric(y_pred))auc_train <- auc(as.numeric(y_train), as.numeric(y_train_pred))cat("AUC分数计算完成:测试集 =", auc_test, ",训练集 =", auc_train, "\n")# 提取敏感性和特异性sen_test <- cm_test$byClass["Sensitivity"]sep_test <- cm_test$byClass["Specificity"]sen_train <- cm_train$byClass["Sensitivity"]sep_train <- cm_train$byClass["Specificity"]cat("敏感性和特异性提取完成。\n")# 追加结果results <- rbind(results, data.frame(Random_Seed = n,Sensitivity_Test = sen_test,Specificity_Test = sep_test,AUC_Test = auc_test,Sensitivity_Train = sen_train,Specificity_Train = sep_train,AUC_Train = auc_train))cat("第", n, "次迭代的结果已追加。\n")
}# 保存结果到CSV
write.csv(results, "jet_NB_par.csv", row.names = FALSE)
cat("结果已保存到jet_NB_par.csv。\n")
简单解说:
(A)其实就是一个for循环语句,for (n in 1:2000) ,2000次就是2000,你要是想运行10000次,就改成10000;
(B)运行以后呢,可以看到模型在迭代,显示的是运行到第几个模型了:
(C)用代码write.csv(results, "jet_NB_par.csv", row.names = FALSE)输出成excel查看,输出地址就是你的工作路径,不懂的话可以使用代码getwd()展示出来。
(D)打开工作路径,可以发现jet_NB_par这个文件:
(E)打开文件,调整一下格式:
(F)然后可以操作了,比如test-sen排个序,看看最好的有多好;比如看看2000次的平均值和标准差:AUC平均值0.77-0.78左右。剩下的自己玩了,不说那么多了,发挥你们的妄想空间。