当前位置: 首页 > news >正文

第J2周:ResNet50V2算法实战与解析

文章目录

  • 一、准备工作
    • 1.设置GPU
    • 2.导入数据
    • 3.查看数据
  • 二、数据预处理
    • 1.加载数据
    • 2.可视化数据
  • 总结

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、准备工作

1.设置GPU

import tensorflow as tf 

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True) # 设置GPU
    tf.config.set_visible_devices([gpus[0]], "GPU")

2.导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   # 用来正常显示负号

import os,PIL,pathlib
import numpy as np

from tensorflow import keras 
from tensorflow.keras import layers, models
data_dir = "8/bird_photos"

data_dir = pathlib.Path(data_dir)

3.查看数据

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:", image_count)

图片总数为: 565

二、数据预处理

1.加载数据

batch_size = 8
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 565 files belonging to 4 classes.
Using 452 files for training.

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 565 files belonging to 4 classes.
Using 113 files for validation.

class_names = train_ds.class_names
print(class_names)

[‘Bananaquit’, ‘Black Skimmer’, ‘Black Throated Bushtiti’, ‘Cockatoo’]

2.可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5
plt.suptitle("微信公众号:K同学啊")

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(2, 4, i + 1)  

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

plt.imshow(images[1].numpy().astype("uint8"))
<matplotlib.image.AxesImage at 0x16a64ec80>

在这里插入图片描述

3.再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

(8, 224, 224, 3)
(8,)

2025-02-14 10:51:27.038555: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor ‘Placeholder/_4’ with dtype int32 and shape [452]
[[{{node Placeholder/_4}}]]
2025-02-14 10:51:27.039049: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor ‘Placeholder/_4’ with dtype int32 and shape [452]
[[{{node Placeholder/_4}}]]

4.配置数据集

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

四、模型复现

tf.keras.applications.resnet_v2.ResNet50V2(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'
)

<keras.engine.functional.Functional at 0x16ab97a60>

import tensorflow as tf
import tensorflow.keras.layers as layers
from tensorflow.keras.models import Model

1.Residual Block

def block2(x, filters, kernel_size=3, stride=1, conv_shortcut=False, name=None):
    preact = layers.BatchNormalization(name=name + '_preact_bn')(x)
    preact = layers.Activation('relu', name=name + '_preact_relu')(preact)

    if conv_shortcut:
        shortcut = layers.Conv2D(4 * filters, 1, strides=stride, name=name + '_0_conv')(preact)
    else:
        shortcut = layers.MaxPooling2D(1, strides=stride)(x) if stride > 1 else x

    x = layers.Conv2D(filters, 1, strides=1, use_bias=False, name=name + '_1_conv')(preact)
    x = layers.BatchNormalization(name=name + '_1_bn')(x)
    x = layers.Activation('relu', name=name + '_1_relu')(x)

    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + '_2_pad')(x)
    x = layers.Conv2D(filters,
                      kernel_size,
                      strides=stride,
                      use_bias=False,
                      name=name + '_2_conv')(x)
    x = layers.BatchNormalization(name=name + '_2_bn')(x)
    x = layers.Activation('relu', name=name + '_2_relu')(x)

    x = layers.Conv2D(4 * filters, 1, name=name + '_3_conv')(x)
    x = layers.Add(name=name + '_out')([shortcut, x])
    return x

2.堆叠Residual Block

def stack2(x, filters, blocks, stride1=2, name=None):
    x = block2(x, filters, conv_shortcut=True, name=name + '_block1')
    for i in range(2, blocks):
        x = block2(x, filters, name=name + '_block' + str(i))
    x = block2(x, filters, stride=stride1, name=name + '_block' + str(blocks))
    return x

3.ResNet50V2架构复现

def ResNet50V2(include_top=True,  # 是否包含位于网络顶部的全连接层
               preact=True,  # 是否使用预激活
               use_bias=True,  # 是否对卷积层使用偏置
               weights='imagenet',
               input_tensor=None,  # 可选的keras张量,用作模型的图像输入
               input_shape=None,
               pooling=None,
               classes=1000,  # 用于分类图像的可选类数
               classifier_activation='softmax'):  # 分类层激活函数
                   
    img_input = layers.Input(shape=input_shape)
    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name='conv1_pad')(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name='conv1_conv')(x)

    if not preact:
        x = layers.BatchNormalization(name='conv1_bn')(x)
        x = layers.Activation('relu', name='conv1_relu')(x)

    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='pool1_pad')(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1_pool')(x)

    x = stack2(x, 64, 3, name='conv2')
    x = stack2(x, 128, 4, name='conv3')
    x = stack2(x, 256, 6, name='conv4')
    x = stack2(x, 512, 3, stride1=1, name='conv5')


    if preact:
        x = layers.BatchNormalization(name='post_bn')(x)
        x = layers.Activation('relu', name='post_relu')(x)
    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x)
    else:
        if pooling == 'avg':
            # GlobalAveragePooling2D就是将每张图片的每个通道值各自加起来再求平均,
            # 最后结果是没有了宽高维度,只剩下个数与平均值两个维度。
            # 可以理解为变成了多张单像素图片。
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    model = Model(img_input, x)
    return model
if __name__ == '__main__':
    model = ResNet50V2(input_shape=(224, 224, 3))
    model.summary()
Model: "model"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 input_2 (InputLayer)           [(None, 224, 224, 3  0           []                               
                                )]                                                                
                                                                                                  
 conv1_pad (ZeroPadding2D)      (None, 230, 230, 3)  0           ['input_2[0][0]']                
                                                                                                  
 conv1_conv (Conv2D)            (None, 112, 112, 64  9472        ['conv1_pad[0][0]']              
                                )                                                                 
                                                                                                  
 pool1_pad (ZeroPadding2D)      (None, 114, 114, 64  0           ['conv1_conv[0][0]']             
                                )                                                                 
                                                                                                  
 pool1_pool (MaxPooling2D)      (None, 56, 56, 64)   0           ['pool1_pad[0][0]']              
                                                                                                  
 conv2_block1_preact_bn (BatchN  (None, 56, 56, 64)  256         ['pool1_pool[0][0]']             
 ormalization)                                                                                    
                                                                                                  
 conv2_block1_preact_relu (Acti  (None, 56, 56, 64)  0           ['conv2_block1_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv2_block1_1_conv (Conv2D)   (None, 56, 56, 64)   4096        ['conv2_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv2_block1_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block1_2_pad (ZeroPaddin  (None, 58, 58, 64)  0           ['conv2_block1_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv2_block1_2_conv (Conv2D)   (None, 56, 56, 64)   36864       ['conv2_block1_2_pad[0][0]']     
                                                                                                  
 conv2_block1_2_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block1_2_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block1_0_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv2_block1_3_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block1_2_relu[0][0]']    
                                                                                                  
 conv2_block1_out (Add)         (None, 56, 56, 256)  0           ['conv2_block1_0_conv[0][0]',    
                                                                  'conv2_block1_3_conv[0][0]']    
                                                                                                  
 conv2_block2_preact_bn (BatchN  (None, 56, 56, 256)  1024       ['conv2_block1_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv2_block2_preact_relu (Acti  (None, 56, 56, 256)  0          ['conv2_block2_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv2_block2_1_conv (Conv2D)   (None, 56, 56, 64)   16384       ['conv2_block2_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv2_block2_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block2_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block2_2_pad (ZeroPaddin  (None, 58, 58, 64)  0           ['conv2_block2_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv2_block2_2_conv (Conv2D)   (None, 56, 56, 64)   36864       ['conv2_block2_2_pad[0][0]']     
                                                                                                  
 conv2_block2_2_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block2_2_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block2_3_conv (Conv2D)   (None, 56, 56, 256)  16640       ['conv2_block2_2_relu[0][0]']    
                                                                                                  
 conv2_block2_out (Add)         (None, 56, 56, 256)  0           ['conv2_block1_out[0][0]',       
                                                                  'conv2_block2_3_conv[0][0]']    
                                                                                                  
 conv2_block3_preact_bn (BatchN  (None, 56, 56, 256)  1024       ['conv2_block2_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv2_block3_preact_relu (Acti  (None, 56, 56, 256)  0          ['conv2_block3_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv2_block3_1_conv (Conv2D)   (None, 56, 56, 64)   16384       ['conv2_block3_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv2_block3_1_bn (BatchNormal  (None, 56, 56, 64)  256         ['conv2_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block3_1_relu (Activatio  (None, 56, 56, 64)  0           ['conv2_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv2_block3_2_pad (ZeroPaddin  (None, 58, 58, 64)  0           ['conv2_block3_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv2_block3_2_conv (Conv2D)   (None, 28, 28, 64)   36864       ['conv2_block3_2_pad[0][0]']     
                                                                                                  
 conv2_block3_2_bn (BatchNormal  (None, 28, 28, 64)  256         ['conv2_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv2_block3_2_relu (Activatio  (None, 28, 28, 64)  0           ['conv2_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 max_pooling2d_3 (MaxPooling2D)  (None, 28, 28, 256)  0          ['conv2_block2_out[0][0]']       
                                                                                                  
 conv2_block3_3_conv (Conv2D)   (None, 28, 28, 256)  16640       ['conv2_block3_2_relu[0][0]']    
                                                                                                  
 conv2_block3_out (Add)         (None, 28, 28, 256)  0           ['max_pooling2d_3[0][0]',        
                                                                  'conv2_block3_3_conv[0][0]']    
                                                                                                  
 conv3_block1_preact_bn (BatchN  (None, 28, 28, 256)  1024       ['conv2_block3_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv3_block1_preact_relu (Acti  (None, 28, 28, 256)  0          ['conv3_block1_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv3_block1_1_conv (Conv2D)   (None, 28, 28, 128)  32768       ['conv3_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv3_block1_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block1_2_pad (ZeroPaddin  (None, 30, 30, 128)  0          ['conv3_block1_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv3_block1_2_conv (Conv2D)   (None, 28, 28, 128)  147456      ['conv3_block1_2_pad[0][0]']     
                                                                                                  
 conv3_block1_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block1_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block1_0_conv (Conv2D)   (None, 28, 28, 512)  131584      ['conv3_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv3_block1_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block1_2_relu[0][0]']    
                                                                                                  
 conv3_block1_out (Add)         (None, 28, 28, 512)  0           ['conv3_block1_0_conv[0][0]',    
                                                                  'conv3_block1_3_conv[0][0]']    
                                                                                                  
 conv3_block2_preact_bn (BatchN  (None, 28, 28, 512)  2048       ['conv3_block1_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv3_block2_preact_relu (Acti  (None, 28, 28, 512)  0          ['conv3_block2_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv3_block2_1_conv (Conv2D)   (None, 28, 28, 128)  65536       ['conv3_block2_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv3_block2_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block2_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block2_2_pad (ZeroPaddin  (None, 30, 30, 128)  0          ['conv3_block2_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv3_block2_2_conv (Conv2D)   (None, 28, 28, 128)  147456      ['conv3_block2_2_pad[0][0]']     
                                                                                                  
 conv3_block2_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block2_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block2_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block2_2_relu[0][0]']    
                                                                                                  
 conv3_block2_out (Add)         (None, 28, 28, 512)  0           ['conv3_block1_out[0][0]',       
                                                                  'conv3_block2_3_conv[0][0]']    
                                                                                                  
 conv3_block3_preact_bn (BatchN  (None, 28, 28, 512)  2048       ['conv3_block2_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv3_block3_preact_relu (Acti  (None, 28, 28, 512)  0          ['conv3_block3_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv3_block3_1_conv (Conv2D)   (None, 28, 28, 128)  65536       ['conv3_block3_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv3_block3_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block3_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block3_2_pad (ZeroPaddin  (None, 30, 30, 128)  0          ['conv3_block3_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv3_block3_2_conv (Conv2D)   (None, 28, 28, 128)  147456      ['conv3_block3_2_pad[0][0]']     
                                                                                                  
 conv3_block3_2_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block3_2_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block3_3_conv (Conv2D)   (None, 28, 28, 512)  66048       ['conv3_block3_2_relu[0][0]']    
                                                                                                  
 conv3_block3_out (Add)         (None, 28, 28, 512)  0           ['conv3_block2_out[0][0]',       
                                                                  'conv3_block3_3_conv[0][0]']    
                                                                                                  
 conv3_block4_preact_bn (BatchN  (None, 28, 28, 512)  2048       ['conv3_block3_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv3_block4_preact_relu (Acti  (None, 28, 28, 512)  0          ['conv3_block4_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv3_block4_1_conv (Conv2D)   (None, 28, 28, 128)  65536       ['conv3_block4_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv3_block4_1_bn (BatchNormal  (None, 28, 28, 128)  512        ['conv3_block4_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block4_1_relu (Activatio  (None, 28, 28, 128)  0          ['conv3_block4_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv3_block4_2_pad (ZeroPaddin  (None, 30, 30, 128)  0          ['conv3_block4_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv3_block4_2_conv (Conv2D)   (None, 14, 14, 128)  147456      ['conv3_block4_2_pad[0][0]']     
                                                                                                  
 conv3_block4_2_bn (BatchNormal  (None, 14, 14, 128)  512        ['conv3_block4_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv3_block4_2_relu (Activatio  (None, 14, 14, 128)  0          ['conv3_block4_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 max_pooling2d_4 (MaxPooling2D)  (None, 14, 14, 512)  0          ['conv3_block3_out[0][0]']       
                                                                                                  
 conv3_block4_3_conv (Conv2D)   (None, 14, 14, 512)  66048       ['conv3_block4_2_relu[0][0]']    
                                                                                                  
 conv3_block4_out (Add)         (None, 14, 14, 512)  0           ['max_pooling2d_4[0][0]',        
                                                                  'conv3_block4_3_conv[0][0]']    
                                                                                                  
 conv4_block1_preact_bn (BatchN  (None, 14, 14, 512)  2048       ['conv3_block4_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv4_block1_preact_relu (Acti  (None, 14, 14, 512)  0          ['conv4_block1_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv4_block1_1_conv (Conv2D)   (None, 14, 14, 256)  131072      ['conv4_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block1_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block1_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block1_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block1_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block1_2_conv (Conv2D)   (None, 14, 14, 256)  589824      ['conv4_block1_2_pad[0][0]']     
                                                                                                  
 conv4_block1_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block1_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block1_0_conv (Conv2D)   (None, 14, 14, 1024  525312      ['conv4_block1_preact_relu[0][0]'
                                )                                ]                                
                                                                                                  
 conv4_block1_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block1_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block1_out (Add)         (None, 14, 14, 1024  0           ['conv4_block1_0_conv[0][0]',    
                                )                                 'conv4_block1_3_conv[0][0]']    
                                                                                                  
 conv4_block2_preact_bn (BatchN  (None, 14, 14, 1024  4096       ['conv4_block1_out[0][0]']       
 ormalization)                  )                                                                 
                                                                                                  
 conv4_block2_preact_relu (Acti  (None, 14, 14, 1024  0          ['conv4_block2_preact_bn[0][0]'] 
 vation)                        )                                                                 
                                                                                                  
 conv4_block2_1_conv (Conv2D)   (None, 14, 14, 256)  262144      ['conv4_block2_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block2_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block2_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block2_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block2_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block2_2_conv (Conv2D)   (None, 14, 14, 256)  589824      ['conv4_block2_2_pad[0][0]']     
                                                                                                  
 conv4_block2_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block2_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block2_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block2_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block2_out (Add)         (None, 14, 14, 1024  0           ['conv4_block1_out[0][0]',       
                                )                                 'conv4_block2_3_conv[0][0]']    
                                                                                                  
 conv4_block3_preact_bn (BatchN  (None, 14, 14, 1024  4096       ['conv4_block2_out[0][0]']       
 ormalization)                  )                                                                 
                                                                                                  
 conv4_block3_preact_relu (Acti  (None, 14, 14, 1024  0          ['conv4_block3_preact_bn[0][0]'] 
 vation)                        )                                                                 
                                                                                                  
 conv4_block3_1_conv (Conv2D)   (None, 14, 14, 256)  262144      ['conv4_block3_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block3_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block3_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block3_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block3_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block3_2_conv (Conv2D)   (None, 14, 14, 256)  589824      ['conv4_block3_2_pad[0][0]']     
                                                                                                  
 conv4_block3_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block3_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block3_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block3_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block3_out (Add)         (None, 14, 14, 1024  0           ['conv4_block2_out[0][0]',       
                                )                                 'conv4_block3_3_conv[0][0]']    
                                                                                                  
 conv4_block4_preact_bn (BatchN  (None, 14, 14, 1024  4096       ['conv4_block3_out[0][0]']       
 ormalization)                  )                                                                 
                                                                                                  
 conv4_block4_preact_relu (Acti  (None, 14, 14, 1024  0          ['conv4_block4_preact_bn[0][0]'] 
 vation)                        )                                                                 
                                                                                                  
 conv4_block4_1_conv (Conv2D)   (None, 14, 14, 256)  262144      ['conv4_block4_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block4_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block4_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block4_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block4_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block4_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block4_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block4_2_conv (Conv2D)   (None, 14, 14, 256)  589824      ['conv4_block4_2_pad[0][0]']     
                                                                                                  
 conv4_block4_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block4_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block4_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block4_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block4_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block4_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block4_out (Add)         (None, 14, 14, 1024  0           ['conv4_block3_out[0][0]',       
                                )                                 'conv4_block4_3_conv[0][0]']    
                                                                                                  
 conv4_block5_preact_bn (BatchN  (None, 14, 14, 1024  4096       ['conv4_block4_out[0][0]']       
 ormalization)                  )                                                                 
                                                                                                  
 conv4_block5_preact_relu (Acti  (None, 14, 14, 1024  0          ['conv4_block5_preact_bn[0][0]'] 
 vation)                        )                                                                 
                                                                                                  
 conv4_block5_1_conv (Conv2D)   (None, 14, 14, 256)  262144      ['conv4_block5_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block5_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block5_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block5_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block5_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block5_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block5_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block5_2_conv (Conv2D)   (None, 14, 14, 256)  589824      ['conv4_block5_2_pad[0][0]']     
                                                                                                  
 conv4_block5_2_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block5_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block5_2_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block5_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block5_3_conv (Conv2D)   (None, 14, 14, 1024  263168      ['conv4_block5_2_relu[0][0]']    
                                )                                                                 
                                                                                                  
 conv4_block5_out (Add)         (None, 14, 14, 1024  0           ['conv4_block4_out[0][0]',       
                                )                                 'conv4_block5_3_conv[0][0]']    
                                                                                                  
 conv4_block6_preact_bn (BatchN  (None, 14, 14, 1024  4096       ['conv4_block5_out[0][0]']       
 ormalization)                  )                                                                 
                                                                                                  
 conv4_block6_preact_relu (Acti  (None, 14, 14, 1024  0          ['conv4_block6_preact_bn[0][0]'] 
 vation)                        )                                                                 
                                                                                                  
 conv4_block6_1_conv (Conv2D)   (None, 14, 14, 256)  262144      ['conv4_block6_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv4_block6_1_bn (BatchNormal  (None, 14, 14, 256)  1024       ['conv4_block6_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block6_1_relu (Activatio  (None, 14, 14, 256)  0          ['conv4_block6_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv4_block6_2_pad (ZeroPaddin  (None, 16, 16, 256)  0          ['conv4_block6_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv4_block6_2_conv (Conv2D)   (None, 7, 7, 256)    589824      ['conv4_block6_2_pad[0][0]']     
                                                                                                  
 conv4_block6_2_bn (BatchNormal  (None, 7, 7, 256)   1024        ['conv4_block6_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv4_block6_2_relu (Activatio  (None, 7, 7, 256)   0           ['conv4_block6_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 max_pooling2d_5 (MaxPooling2D)  (None, 7, 7, 1024)  0           ['conv4_block5_out[0][0]']       
                                                                                                  
 conv4_block6_3_conv (Conv2D)   (None, 7, 7, 1024)   263168      ['conv4_block6_2_relu[0][0]']    
                                                                                                  
 conv4_block6_out (Add)         (None, 7, 7, 1024)   0           ['max_pooling2d_5[0][0]',        
                                                                  'conv4_block6_3_conv[0][0]']    
                                                                                                  
 conv5_block1_preact_bn (BatchN  (None, 7, 7, 1024)  4096        ['conv4_block6_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv5_block1_preact_relu (Acti  (None, 7, 7, 1024)  0           ['conv5_block1_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv5_block1_1_conv (Conv2D)   (None, 7, 7, 512)    524288      ['conv5_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv5_block1_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block1_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block1_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block1_2_pad (ZeroPaddin  (None, 9, 9, 512)   0           ['conv5_block1_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv5_block1_2_conv (Conv2D)   (None, 7, 7, 512)    2359296     ['conv5_block1_2_pad[0][0]']     
                                                                                                  
 conv5_block1_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block1_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block1_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block1_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block1_0_conv (Conv2D)   (None, 7, 7, 2048)   2099200     ['conv5_block1_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv5_block1_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block1_2_relu[0][0]']    
                                                                                                  
 conv5_block1_out (Add)         (None, 7, 7, 2048)   0           ['conv5_block1_0_conv[0][0]',    
                                                                  'conv5_block1_3_conv[0][0]']    
                                                                                                  
 conv5_block2_preact_bn (BatchN  (None, 7, 7, 2048)  8192        ['conv5_block1_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv5_block2_preact_relu (Acti  (None, 7, 7, 2048)  0           ['conv5_block2_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv5_block2_1_conv (Conv2D)   (None, 7, 7, 512)    1048576     ['conv5_block2_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv5_block2_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block2_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block2_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block2_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block2_2_pad (ZeroPaddin  (None, 9, 9, 512)   0           ['conv5_block2_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv5_block2_2_conv (Conv2D)   (None, 7, 7, 512)    2359296     ['conv5_block2_2_pad[0][0]']     
                                                                                                  
 conv5_block2_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block2_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block2_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block2_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block2_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block2_2_relu[0][0]']    
                                                                                                  
 conv5_block2_out (Add)         (None, 7, 7, 2048)   0           ['conv5_block1_out[0][0]',       
                                                                  'conv5_block2_3_conv[0][0]']    
                                                                                                  
 conv5_block3_preact_bn (BatchN  (None, 7, 7, 2048)  8192        ['conv5_block2_out[0][0]']       
 ormalization)                                                                                    
                                                                                                  
 conv5_block3_preact_relu (Acti  (None, 7, 7, 2048)  0           ['conv5_block3_preact_bn[0][0]'] 
 vation)                                                                                          
                                                                                                  
 conv5_block3_1_conv (Conv2D)   (None, 7, 7, 512)    1048576     ['conv5_block3_preact_relu[0][0]'
                                                                 ]                                
                                                                                                  
 conv5_block3_1_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block3_1_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block3_1_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block3_1_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block3_2_pad (ZeroPaddin  (None, 9, 9, 512)   0           ['conv5_block3_1_relu[0][0]']    
 g2D)                                                                                             
                                                                                                  
 conv5_block3_2_conv (Conv2D)   (None, 7, 7, 512)    2359296     ['conv5_block3_2_pad[0][0]']     
                                                                                                  
 conv5_block3_2_bn (BatchNormal  (None, 7, 7, 512)   2048        ['conv5_block3_2_conv[0][0]']    
 ization)                                                                                         
                                                                                                  
 conv5_block3_2_relu (Activatio  (None, 7, 7, 512)   0           ['conv5_block3_2_bn[0][0]']      
 n)                                                                                               
                                                                                                  
 conv5_block3_3_conv (Conv2D)   (None, 7, 7, 2048)   1050624     ['conv5_block3_2_relu[0][0]']    
                                                                                                  
 conv5_block3_out (Add)         (None, 7, 7, 2048)   0           ['conv5_block2_out[0][0]',       
                                                                  'conv5_block3_3_conv[0][0]']    
                                                                                                  
 post_bn (BatchNormalization)   (None, 7, 7, 2048)   8192        ['conv5_block3_out[0][0]']       
                                                                                                  
 post_relu (Activation)         (None, 7, 7, 2048)   0           ['post_bn[0][0]']                
                                                                                                  
 avg_pool (GlobalAveragePooling  (None, 2048)        0           ['post_relu[0][0]']              
 2D)                                                                                              
                                                                                                  
 predictions (Dense)            (None, 1000)         2049000     ['avg_pool[0][0]']               
                                                                                                  
==================================================================================================
Total params: 25,613,800
Trainable params: 25,568,360
Non-trainable params: 45,440
__________________________________________________________________________________________________
model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

五、训练模型

epochs = 10

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)
Epoch 1/10


2025-02-14 10:51:34.188825: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [452]
	 [[{{node Placeholder/_4}}]]
2025-02-14 10:51:34.189120: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [452]
	 [[{{node Placeholder/_0}}]]


57/57 [==============================] - ETA: 0s - loss: 1.4427 - accuracy: 0.5310

2025-02-14 10:52:07.689698: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype int32 and shape [113]
	 [[{{node Placeholder/_4}}]]
2025-02-14 10:52:07.689827: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [113]
	 [[{{node Placeholder/_0}}]]


57/57 [==============================] - 36s 613ms/step - loss: 1.4427 - accuracy: 0.5310 - val_loss: 994.0645 - val_accuracy: 0.3186
Epoch 2/10
57/57 [==============================] - 34s 599ms/step - loss: 0.8882 - accuracy: 0.6482 - val_loss: 16.8545 - val_accuracy: 0.3805
Epoch 3/10
57/57 [==============================] - 34s 599ms/step - loss: 0.8002 - accuracy: 0.6925 - val_loss: 4.0983 - val_accuracy: 0.4602
Epoch 4/10
57/57 [==============================] - 34s 599ms/step - loss: 0.6916 - accuracy: 0.7412 - val_loss: 4.0794 - val_accuracy: 0.3540
Epoch 5/10
57/57 [==============================] - 34s 600ms/step - loss: 0.6951 - accuracy: 0.7456 - val_loss: 83.9201 - val_accuracy: 0.3186
Epoch 6/10
57/57 [==============================] - 34s 604ms/step - loss: 0.6024 - accuracy: 0.7655 - val_loss: 3.4875 - val_accuracy: 0.4425
Epoch 7/10
57/57 [==============================] - 34s 600ms/step - loss: 0.5214 - accuracy: 0.7965 - val_loss: 1.2221 - val_accuracy: 0.6991
Epoch 8/10
57/57 [==============================] - 35s 623ms/step - loss: 0.4850 - accuracy: 0.8142 - val_loss: 1.4684 - val_accuracy: 0.4867
Epoch 9/10
57/57 [==============================] - 35s 613ms/step - loss: 0.4335 - accuracy: 0.8252 - val_loss: 1.5076 - val_accuracy: 0.6814
Epoch 10/10
57/57 [==============================] - 35s 615ms/step - loss: 0.3424 - accuracy: 0.8850 - val_loss: 1.7519 - val_accuracy: 0.6903

六、结果可视化

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结

本周项目手动搭建了手动搭建了ResNet50V2模型,与ResNet50模型相比,残差模型将BN和ReLU进行了前置,在一定程度上有效地提升了模型的准确率。但是模型效果不是很理想,后续需要进一步优化。

相关文章:

  • 二叉树详解
  • Springboot整合ES
  • 【NLP251】命名实体识别常用模块(基于Transformer分类)
  • PyTorch 混合精度训练中的警告处理与代码适配指南
  • 部署 ollama + deepseek + open-webui 遇到的常见问题与解决建议
  • CEF132编译指南 MacOS 篇 - 获取 CEF 源码 (五)
  • SpringBoot异步调用相同类的方法
  • Cloud: aws:network: limit 含有pps这种限制
  • linux deepseek-r1模型安装
  • 详解如何使用Pytest内置Fixture tmp_path 管理临时文件
  • [创业之路-300]:进一步理解货币与金钱, 货币与货币政策
  • Element Plus table 去除行hover效果
  • DeepSeek 使用教程
  • Docker 容器基础:创建、运行、管理
  • 配置 Nginx 以支持 HTTPS
  • 动手学Agent——Day2
  • 2025.2.14——1400
  • DataX使用时常见问题(持续更新)
  • 从零开始人工智能Matlab案例-粒子群优化
  • 【LeetCode】20. 有效的括号
  • 上交所五方面落实募资新规:强化关键少数责任和股东权利保障
  • 由我国牵头制定,适老化数字经济国际标准发布
  • 宜昌谱写新叙事:长江大保护与高质量发展如何相互成就
  • 泽连斯基启程前往土耳其
  • 十年磨一剑!上海科学家首次揭示宿主识别肠道菌群调控免疫新机制
  • 冰雹造成车损能赔吗?如何理赔?机构答疑