P8512 [Ynoi Easy Round 2021] TEST_152 Solution
Description
有一序列 c = ( c 1 , c 2 , ⋯ , c m ) c=(c_1,c_2,\cdots,c_m) c=(c1,c2,⋯,cm) 和 n n n 个三元组 ( l i , r i , v i ) (l_i,r_i,v_i) (li,ri,vi).
回答 q q q 次形如 ( L , R ) (L,R) (L,R) 的询问,具体如下:
- 将 c c c 置为全 0 0 0.
- 对每个 i ∈ [ L , R ] i\in[L,R] i∈[L,R],将 c l i ∼ c r i c_{l_i}\sim c_{r_i} cli∼cri 赋值为 v i v_i vi.
- 最后输出 ∑ i = 1 m c i \sum_{i=1}^m c_i ∑i=1mci.
询问之间互相独立.
Limitations
1 ≤ n , m , q ≤ 5 × 1 0 5 1\le n,m,q \le 5\times 10^5 1≤n,m,q≤5×105
1 ≤ l i ≤ r i ≤ m 1 \le l_i\le r_i\le m 1≤li≤ri≤m
1 ≤ L ≤ R ≤ n 1 \le L \le R \le n 1≤L≤R≤n
Solution
典题一道.
答案不好在线求,但可由前缀相减得到,考虑挂在 r r r 上做扫描线,并开 BIT
维护时间轴.
我们都知道,区间 [ l , r ] [l,r] [l,r] 覆盖 v v v 后的贡献为 v × ( r − l + 1 ) v\times (r-l+1) v×(r−l+1).
然而覆盖后需要抹除之前的贡献,而这可以借助 ODT
完成.
具体地,在 assign
时将 [ l , r ] [l,r] [l,r] 中原有的颜色段的贡献在 BIT
上一段段减掉.
然后就做完了,代码很好写.
时间复杂度 O ( n log n ) O(n\log n) O(nlogn),具体请自证.
Code
2.65 KB , 10.01 s , 64.81 MB (in total, C++20 with O2) 2.65\text{KB},10.01\text{s},64.81\text{MB}\;\texttt{(in total, C++20 with O2)} 2.65KB,10.01s,64.81MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}struct Node {int l, r;mutable int v;int t;inline Node(int l, int r = 0, int v = 0, int t = 0) : l(l), r(r), v(v), t(t) {}inline bool operator<(const Node& rhs) const { return l < rhs.l; }
};struct ODT {set<Node> s;using Iter = set<Node>::iterator;inline ODT() {}inline ODT(int n) {s.emplace(0, n - 1, 0, 0);}inline Iter split(int pos) {auto it = s.lower_bound(Node(pos, 0, 0, 0));if (it != s.end() && it->l == pos) return it;--it;if (it->r < pos) return s.end();auto [l, r, val, tim] = *it;s.erase(it), s.emplace(l, pos - 1, val, tim);return s.emplace(pos, r, val, tim).first;}inline void assign(int l, int r, int v, int t, vector<Node>& opt) {opt.clear();auto itr = split(r + 1), itl = split(l);for (auto it = itl; it != itr; it++) opt.push_back(*it);s.erase(itl, itr);s.emplace(l, r, v, t);}
};int lowbit(int x){return x & -x;
}template<class T>
struct fenwick{int n;vector<T> c;fenwick() {}fenwick(int _n): n(_n){c.resize(n + 1);}fenwick(const vector<T> &a): n(a.size()){c.resize(n + 1);for(int i = 1; i <= n; i++){c[i] = c[i] + a[i - 1];int j = i + lowbit(i);if(j <= n) c[j] = c[j] + c[i];}}void add(int x, const T& v){for(int i = x + 1; i <= n; i += lowbit(i)) c[i] = c[i] + v;}T ask(int x){T ans{};for(int i = x + 1; i; i -= lowbit(i)) ans = ans + c[i];return ans;}T ask(int l, int r){return ask(r) - ask(l - 1);}
};using pii = pair<int, int>;signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, m, q;scanf("%d %d %d", &n, &m, &q);vector<int> L(n), R(n), X(n);for (int i = 0; i < n; i++) {scanf("%d %d %d", &L[i], &R[i], &X[i]);L[i]--, R[i]--;}vector<vector<pii>> adj(n);for (int i = 0, l, r; i < q; i++) {scanf("%d %d", &l, &r), l--, r--;adj[r].emplace_back(l, i);}ODT odt(m);fenwick<i64> fwk(n);vector<Node> tmp;vector<i64> ans(q);for (int i = 0; i < n; i++) {odt.assign(L[i], R[i], X[i], i, tmp);for (auto [l, r, v, t] : tmp) fwk.add(t, -1LL * (r - l + 1) * v);fwk.add(i, 1LL * (R[i] - L[i] + 1) * X[i]);for (auto [j, id] : adj[i]) ans[id] = fwk.ask(j, i);}for (int i = 0; i < q; i++) printf("%lld\n", ans[i]);return 0;
}