当前位置: 首页 > news >正文

自然语言处理NLP入门 -- 第三节词袋模型与 TF-IDF

目标
  • 了解词袋模型(BoW)和 TF-IDF 的概念
  • 通过实际示例展示 BoW 和 TF-IDF 如何将文本转换为数值表示
  • 详细讲解 Scikit-learn 的实现方法
  • 通过代码示例加深理解
  • 归纳学习难点,并提供课后练习和讲解

3.1 词袋模型(Bag of Words, BoW)

1. 什么是词袋模型?

词袋模型(BoW)是一种最简单的文本表示方法,它的核心思想是:

  • 将一篇文章表示为一个词的集合
  • 忽略词的顺序,仅统计每个词的出现次数
  • 转换成一个数值向量,方便计算机处理

让我们用一个直观的例子来理解:

示例:文本数据

假设有两条文本:

文本1: "猫 喜欢 喝 牛奶"
文本2: "狗 也 喜欢 喝 牛奶"

如果我们要分析这些文本,需要将它们转换为计算机可处理的格式。

构建词表(Vocabulary)

首先,我们从所有文本中提取唯一的词,构建一个词表:

词表 = ["猫", "喜欢", "喝", "牛奶", "狗", "也"]
转换成数值表示

对于每条文本,我们用向量表示每个词出现的次数:

文本1: [1, 1, 1, 1, 0, 0]  # "猫"、"喜欢"、"喝"、"牛奶" 各出现 1 次
文本2: [0, 1, 1, 1, 1, 1]  # "狗"、"也"、"喜欢"、"喝"、"牛奶" 各出现 1 次

这样,我们就把文本转换成了一个数值矩阵,每行对应一个文本,每列对应一个单词的词频。


2. BoW 代码示例

我们使用 Scikit-learnCountVectorizer 来实现 BoW:

from sklearn.feature_extraction.text import CountVectorizer

# 1. 定义文本数据
texts = ["猫 喜欢 喝 牛奶", "狗 也 喜欢 喝 牛奶"]

# 2. 创建 CountVectorizer 对象,确保单字符词也被保留
vectorizer = CountVectorizer(token_pattern=r"(?u)\b\w+\b", stop_words=None)

# 3. 训练 BoW 模型并转换文本
bow_matrix = vectorizer.fit_transform(texts)

# 4. 输出词表
print("词表:", vectorizer.get_feature_names_out())

# 5. 输出转换后的 BoW 矩阵
print("BoW 矩阵:\n", bow_matrix.toarray())

运行结果

词表: ['也' '喜欢' '喝' '牛奶' '狗' '猫']
BoW 矩阵:
[[0 1 1 1 0 1]
 [1 1 1 1 1 0]]
  • 词表是按字母顺序排列的
  • 0 表示该单词未出现在这篇文章中
  • 1 表示该单词在文章中出现了一次

3.2 TF-IDF(词频-逆文档频率)

1. 为什么需要 TF-IDF?

BoW 只计算了单词的出现次数,但有个问题:

  • 高频词的影响:在中文里,“的”、“是”、“在” 这样的词出现次数很高,但它们对文本的意义贡献很小。
  • 重要但不常见的词被忽略:像 “人工智能” 这样的词可能只在部分文本中出现,但它们的信息量很大。

TF-IDF(词频-逆文档频率) 通过两部分来调整词的重要性:

  • TF(词频,Term Frequency):衡量某个词在文章中出现的频率。
    在这里插入图片描述

  • IDF(逆文档频率,Inverse Document Frequency):衡量某个词在所有文档中的重要性。
    [
IDF = \log(\frac{\text{总文档数}}{\text{包含该词的文档数} + 1})
]

    • 例如,“的” 在所有文本中都出现,IDF 低
    • “人工智能” 只在一部分文章出现,IDF 高

最终:
在这里插入图片描述

它的作用是:

  • 常见但无意义的词(如 “的”、“是”)权重降低
  • 罕见但重要的词(如 “人工智能”)权重提高

2. TF-IDF 代码示例

我们使用 Scikit-learnTfidfVectorizer 进行 TF-IDF 计算。

from sklearn.feature_extraction.text import TfidfVectorizer

# 1. 定义文本数据
texts = ["猫 喜欢 喝 牛奶", "狗 也 喜欢 喝 牛奶"]

# 2. 创建 TF-IDF Vectorizer 对象,确保单字符词也被保留
tfidf_vectorizer = TfidfVectorizer(token_pattern=r"(?u)\b\w+\b", stop_words=None)

# 3. 训练 TF-IDF 并转换文本
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)

# 4. 输出词表
print("词表:", tfidf_vectorizer.get_feature_names_out())

# 5. 输出 TF-IDF 矩阵
print("TF-IDF 矩阵:\n", tfidf_matrix.toarray())

运行结果(示例)

词表: ['也' '喜欢' '喝' '牛奶' '狗' '猫']
TF-IDF 矩阵:
[[0.     0.5    0.5    0.5    0.     0.707]
 [0.707  0.5    0.5    0.5    0.707  0.    ]]

3. 观察结果

  • “喜欢”、“喝”、“牛奶” 这些词在两篇文章中都出现,所以权重较低
  • “猫” 只在第一篇文章中出现,所以权重较高
  • “狗” 只在第二篇文章中出现,所以权重较高

3.3 难点总结

难点理解方式
BoW 忽略词序记住:BoW 只统计词频,而不考虑单词顺序
TF-IDF 计算复杂只需记住:TF 代表词频,IDF 代表重要性(少见但重要的词权重高)
向量化后数据文本转化为数字矩阵,方便机器学习使用

3.4 课后练习

1. 理解 BoW

练习:
请修改以下代码,增加一个新文本,并观察 BoW 变化:

texts = ["猫 喜欢 喝 牛奶", "狗 也 喜欢 喝 牛奶", "机器学习 是 人工智能 的 一部分"]
  • 你观察到哪些新单词?
  • 词表是否有变化?

2. 理解 TF-IDF

练习:
请修改以下代码,增加一个新文本,并观察 TF-IDF 变化:

texts = ["机器学习 很 有趣", "机器学习 使 生活 更 智能"]
  • 哪些词的权重较高?
  • 频繁出现的词的权重是否下降了?

总结

  • BoW 适用于简单 NLP 任务,但容易丢失语义信息
  • TF-IDF 解决了高频词影响,但仍无法完全理解上下文
  • 下一步学习:深度学习模型(如 Word2Vec、BERT)如何更好地理解文本语义

相关文章:

  • 129,【2】buuctf [BJDCTF2020]EzPHP
  • React进阶之React核心源码解析(一)
  • 开源机器人+具身智能 解决方案+AI
  • 第一天:爬虫介绍
  • 设置ollama接口能外部访问
  • maven导入spring框架
  • vue3读取webrtc-stream 视频流
  • Docker+Jenkins自动化部署SpringBoot项目【详解git,jdk,maven,ssh配置等各种配置,附有示例+代码】
  • ​矩阵元素的“鞍点”​
  • Python爬虫实战:获取51job职位信息,并做数据分析
  • el-table封装一个自定义列配置表格组件(vue3开箱即用)
  • 高速存储文章目录
  • 称呼计算器:智能科技,简化您的计算生活
  • python后端调用Deep Seek API
  • ffmpeg基本用法
  • 图数据库neo4j进阶(一):csv文件导入节点及关系
  • bitcoinjs学习1—P2PKH
  • 【开源免费】基于SpringBoot+Vue.JS工作流程管理系统(JAVA毕业设计)
  • ubuntu20.04+RTX4060Ti大模型环境安装
  • SpringBoot实战:高效获取视频资源
  • 中国金茂新任命三名副总裁,撤销区域公司
  • 2025世界数字教育大会将于5月14日至16日在武汉举办
  • 代理销售保险存在误导行为,农业银行重庆市分行相关负责人被罚款0.1万元
  • 马克思主义理论研究教学名师系列访谈|董雅华:让学生感知马克思主义理论存在于社会生活中
  • 长安汽车辟谣作为二级企业并入东风集团:将追究相关方责任
  • 前瞻|中俄元首今年将首次面对面会晤,专家:国际变局中构建更坚韧的合作架构