Class5多层感知机的从零开始实现
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs,num_outputs,num_hiddens = 784,10,256
W1 = nn.Parameter(torch.randn(num_inputs,num_hiddens,requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens,requires_grad=True))
W2 = nn.Parameter(torch.randn(num_hiddens,num_outputs,requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs,requires_grad=True))
params = [W1,b1,W2,b2]
def relu(X):a = torch.zeros_like(X)return torch.max(X,a)
def net(X):X = X.reshape((-1,num_inputs))H = relu(X @ W1 + b1)return (H @ W2 + b2)
net.train = lambda: None
net.eval = lambda: None
def net(X):X = X.reshape((-1,num_inputs))H = relu(X @ W1 + b1)return (H @ W2 + b2)
net.train = lambda: None
net.eval = lambda: None
loss = nn.CrossEntropyLoss(reduction='none')
num_epochs,lr = 10,0.1
updater = torch.optim.SGD(params,lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,updater)