当前位置: 首页 > news >正文

What are the advantages of our neural network inference framework?

What are the advantages of our neural network inference framework?

  • 1. Background
  • 2. What are the advantages of our neural network inference framework?
  • References

1. Background

Let me introduce /ˌɪntrəˈdjuːs/ the background /ˈbækɡraʊnd/ first. Today we will talk about this topic: What are the advantages of our neural network inference framework?

2. What are the advantages of our neural network inference framework?

Dave: Hello, Forever. I heard that the latest Galaxy /ˈɡæləksi/ smartphones are equipped /ɪˈkwɪpt/ with your framework.
Forever: Yeah, sure. In fact, our framework has supported both high-end and low-end Samsung phones since 2014.
Dave: This is a long life cycle for software. Could you introduce your framework to us?
Forever: Yeah. Our team is responsible /rɪˈspɒnsəbl/ for the neural network inference framework on the mobile GPU. As you know, there are many neural network models such as classification models, detection models, stable diffusion models, large language models, and so on. Our framework can parse /pɑːz/ the model, optimize the graph, and then execute the model on the mobile GPU.
Dave: It’s interesting. What are the advantages of your hardware?
Forever: Let me think about it. As we know, neural network models can be executed on CPU, GPU or NPU. For computing tasks, GPUs are more powerful than CPUs. NPUs are specialized /ˈspeʃəlaɪzd/ processors that only support some model. In contrast, GPUs are general-purpose processor that support all models.
Dave: Oh, I see. What are the advantages of your inference framework?
Forever: I almost forgot. Let me describe the advantages of our inference framework.
On one hand, it is a general and reliable /rɪˈlaɪəbl/ inference framework. We are constantly /ˈkɒnstəntli/ improving our code and adding new features.
On the other hand, it is a high-performance inference framework. We keep working on both software and hardware related optimizations so that these models can run on GPU in real-time.
Dave: That’s a awesome /ˈɔːsəm/. I think your framework plays an important role /rəʊl/ for Galaxy smartphones and I hope your software can achieve higher performance.
Forever: Thanks. We have confidence /ˈkɒnfɪdəns/ in achieving this.

GPU stands for graphics processing unit.

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

http://www.dtcms.com/a/135342.html

相关文章:

  • 【Sequelize】关联模型和孤儿记录
  • C#中async await异步关键字用法和异步的底层原理
  • YOLOv2 性能评估与对比分析详解
  • 操作系统内核调度:抢占式与非抢占式及RTOS中的应用
  • 目标检测与分割:深度学习在视觉中的应用
  • 代码随想录算法训练营Day30
  • NO.93十六届蓝桥杯备战|图论基础-拓扑排序|有向无环图|AOV网|摄像头|最大食物链计数|杂物(C++)
  • linux ceres库编译注意事项及测试demo
  • Java学习手册:Java线程安全与同步机制
  • V型调节阀:专为解决锂电池行业碳酸锂结晶介质的革命性方案-耀圣
  • 《Training Language Models to Self-Correct via Reinforcement Learning》全文翻译
  • go入门记录
  • 金能电力领跑京东工业安全工器具赛道 2025年首季度数据诠释“头部效应”
  • 基于工业操作系统构建企业数字化生态的实践指南
  • 编码风格(二)——使用具有风格的语言特性、格式和风格的挑战
  • leetcode0547. 省份数量-medium
  • 报告分享 | 模型上下文协议(MCP):实现大模型与外部工具的标准化交互
  • L1-6 大勾股定理(PTA)
  • Web三漏洞学习(其二:sql注入)
  • Chat2DB 数据库客户端邀请码
  • 智能外呼系统:企业数字营销的AI新引擎
  • 【网络篇】UDP协议的封装分用全过程
  • CSS标签选择器与类选择器
  • 蓝桥杯备赛笔记(嵌入式)
  • 动捕数据手套:灵巧手与机器臂开发训练的“智能密钥”
  • 512天,倔强生长:一位技术创作者的独白
  • 完全无网络环境的 openEuler 系统离线安装 ClamAV 的详细步骤
  • 计算机网络面经
  • 经典算法 判断一个图是不是树
  • Java——方法