当前位置: 首页 > news >正文

记一次InternVL3- 2B 8B的部署测验日志

1、模型下载魔搭社区

2、运行环境:
 

1、硬件

RTX 3090*1  云主机[普通性能]

8核15G 200G

免费 32 Mbps+付费68Mbps  

ubuntu22.04

cuda12.4 

2、软件:

flash_attn(好像不用装 忘记了)
numpy
Pillow==10.3.0
Requests==2.31.0
transformers==4.43.0
accelerate==0.30.0
torch==2.5.0(自己去下载另一个库)

modelscope==1.25.0
 


(base) root@ubuntu22:/opt# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Tue_Feb_27_16:19:38_PST_2024
Cuda compilation tools, release 12.4, V12.4.99
Build cuda_12.4.r12.4/compiler.33961263_0

3、运行代码如下

import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from modelscope import AutoModel, AutoTokenizer
from transformers import AutoConfig
import os
import time


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def split_model(model_name):
    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained('OpenGVLab/InternVL3-8B', trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = 0
    device_map['mlp1'] = 0
    device_map['language_model.model.tok_embeddings'] = 0
    device_map['language_model.model.embed_tokens'] = 0
    device_map['language_model.output'] = 0
    device_map['language_model.model.norm'] = 0
    device_map['language_model.model.rotary_emb'] = 0
    device_map['language_model.lm_head'] = 0
    device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

    return device_map


# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
path = 'OpenGVLab/InternVL3-8B'
device_map = split_model('InternVL3-8B')
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    load_in_8bit=False,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

while True:
    image_path = input("请输入图片路径(输入 'q' 退出):")
    if image_path.lower() == 'q':
        break
    if not os.path.exists(image_path):
        print("图片不存在,跳过本次问答。")
        continue
    question = input("请输入问题:")
    start_time = time.time()
    # set the max number of tiles in `max_num`
    pixel_values = load_image(image_path, max_num=12).to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens=1024, do_sample=True)

    # single-image single-round conversation (单图单轮对话)
    question = f'<image>\n{question}'
    response = model.chat(tokenizer, pixel_values, question, generation_config)
    end_time = time.time()
    execution_time = end_time - start_time
    print(f'User: {question}\nAssistant: {response}')
    print(f'本次代码执行时间: {execution_time:.2f} 秒')

    # 释放单次资源缓存
    del pixel_values
    torch.cuda.empty_cache()    

4、测试效果:

问题和耗时如图

5、资源占用

不释放资源会一直涨显存。总体还算满意,我试了好多个图理解大模型,就属它牛一点

附图一张

补充,测试InternVL3-2B的结果

相关文章:

  • C 语言 第八章 文件操作
  • ElMessage
  • Redis 分布式锁实现原理与实战全解析
  • 腾讯云开发+MCP:旅游规划攻略
  • 修改idea/android studio等编辑器快捷注释从当前行开头的反人类行为
  • 车载以太网-TLS
  • 网络基础1
  • intructor库实现可迭代对象输出
  • LangChain高阶技巧:动态配置Runnable组件的原理剖析与实战应用
  • Spring AI高级RAG功能查询重写和查询翻译
  • 掌趣科技前端面试题及参考答案
  • 用AI改写生意底层逻辑 深圳天天送为线下万店赋能“数字飞轮”
  • 2025年常见渗透测试面试题- 常见中间件(题目+回答)
  • 山东大学软件学院项目实训-基于大模型的模拟面试系统-专栏管理部分
  • 代码随想录算法训练营Day27
  • vulkanscenegraph显示倾斜模型(5.9)-vsg中vulkan资源的编译
  • 多模态大语言模型arxiv论文略读(十三)
  • 【使用jenkins+docker自动化部署java项目】
  • MacOs下解决远程终端内容复制并到本地粘贴板
  • Web渗透之文件包含漏洞
  • 持续8年仍难终了的纠纷:败诉方因拒执罪被立案,胜诉方银行账户遭冻结
  • 成都警方通报:8岁男孩落水父母下水施救,父亲遇难
  • 影子调查丨三名“淘金客”殒命雪峰山:千余废弃金矿洞的监管难题
  • 上海护师邢红获第50届南丁格尔奖,她为何能摘得护理界最高荣誉
  • 梅花奖在上海|“我的乱弹我的团”,民营院团首次入围终评
  • 巴基斯坦全面恢复领空开放