当前位置: 首页 > news >正文

多元高斯分布函数

1、 n n n元向量

假设 n n n元随机变量 X X X
X = [ X 1 , X 2 , ⋯   , X i , ⋯   , X n ] T μ = [ μ 1 , μ 2 , ⋯   , μ i , ⋯   , μ n ] T σ = [ σ 1 , σ 2 , ⋯   , σ i , ⋯   , σ n ] T X i ∼ N ( μ i , σ i 2 ) \begin{split} X&=[X_1,X_2,\cdots,X_i,\cdots ,X_n]^T\\ \mu&= [\mu_1,\mu_2,\cdots,\mu_i,\cdots,\mu_n]^T\\ \sigma&= [\sigma_1,\sigma_2,\cdots,\sigma_i,\cdots,\sigma_n]^T\\ X_i&\sim N(\mu_i,\sigma_i^2)\\ \end{split} XμσXi=[X1,X2,,Xi,,Xn]T=[μ1,μ2,,μi,,μn]T=[σ1,σ2,,σi,,σn]TN(μi,σi2)
Σ \Sigma Σ为协方差矩阵。
Σ = [ C o n v ( X 1 , X 1 ) C o n v ( X 1 , X 2 ) ⋯ C o n v ( X 1 , X n ) C o n v ( X 2 , X 1 ) C o n v ( X 2 , X 2 ) ⋯ C o n v ( X 2 , X n ) ⋮ ⋮ ⋱ ⋮ C o n v ( X n , X 1 ) C o n v ( X n , X 2 ) ⋯ C o n v ( X n , X n ) ] \begin{split} \Sigma&=\left[\begin{matrix} Conv(X_1,X_1) & Conv(X_1,X_2) & \cdots & Conv(X_1,X_n) \\ Conv(X_2,X_1) & Conv(X_2,X_2) & \cdots & Conv(X_2,X_n) \\ \vdots & \vdots & \ddots & \vdots \\ Conv(X_n,X_1) & Conv(X_n,X_2) & \cdots & Conv(X_n,X_n) \\ \end{matrix}\right] \end{split} Σ= Conv(X1,X1)Conv(X2,X1)Conv(Xn,X1)Conv(X1,X2)Conv(X2,X2)Conv(Xn,X2)Conv(X1,Xn)Conv(X2,Xn)Conv(Xn,Xn)
X 1 , X 2 , ⋯   , X i , ⋯   , X n X_1,X_2,\cdots,X_i,\cdots ,X_n X1,X2,,Xi,,Xn之间相互独立时,有
Σ = [ σ 1 2 0 ⋯ 0 0 σ 2 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ n 2 ] \begin{split} \Sigma&=\left[\begin{matrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \\ \end{matrix}\right] \end{split} Σ= σ12000σ22000σn2

2 、 n n n元高斯分布

p ( X ) = 1 ( 2 π ) n 2 ⋅ ∣ Σ ∣ 1 2 ⋅ e − ( X − μ ) T Σ − 1 ( X − μ ) 2 \begin{split} p(X)&=\frac{1}{(2\pi)^{\frac{n}{2}}\cdot|\Sigma|^{\frac{1}{2}}}\cdot e^{-\frac{(X-\mu)^T\Sigma^{-1}(X-\mu)}{2}} \end{split} p(X)=(2π)2n∣Σ211e2(Xμ)TΣ1(Xμ)
其中, ∣ Σ ∣ |\Sigma| ∣Σ∣为协方差矩阵 Σ \Sigma Σ的行列式

3、1元高斯分布

此时
X = [ X 1 ] μ = [ μ 1 ] σ = [ σ 1 ] X 1 ∼ N ( μ 1 , σ 1 2 ) Σ = [ σ 1 2 ] \begin{split} X&=[X_1]\\ \mu&= [\mu_1]\\ \sigma&= [\sigma_1]\\ X_1&\sim N(\mu_1,\sigma_1^2)\\ \Sigma&=[\sigma_1^2] \end{split} XμσX1Σ=[X1]=[μ1]=[σ1]N(μ1,σ12)=[σ12]

p ( X 1 ) = 1 ( 2 π ) n 2 ⋅ ∣ Σ ∣ 1 2 ⋅ e − ( X − μ ) T Σ − 1 ( X − μ ) 2 = 1 ( 2 π ) 1 2 ⋅ ( σ 1 2 ) 1 2 ⋅ e − ( X 1 − μ 1 ) T ( σ 1 2 ) − 1 ( X 1 − μ 1 ) 2 = 1 2 π ⋅ σ 1 ⋅ e − ( X 1 − μ 1 ) 2 2 ⋅ σ 1 2 \begin{split} p(X_1)&=\frac{1}{(2\pi)^{\frac{n}{2}}\cdot|\Sigma|^{\frac{1}{2}}}\cdot e^{-\frac{(X-\mu)^T\Sigma^{-1}(X-\mu)}{2}} \\ &=\frac{1}{(2\pi)^{\frac{1}{2}}\cdot (\sigma_1^2)^{\frac{1}{2}}}\cdot e^{-\frac{(X_1-\mu_1)^T (\sigma_1^2)^{-1}(X_1-\mu_1)}{2}} \\ &=\frac{1}{\sqrt{2\pi} \cdot \sigma_1}\cdot e^{-\frac{(X_1-\mu_1)^2}{2\cdot \sigma_1^2}} \\ \end{split} p(X1)=(2π)2n∣Σ211e2(Xμ)TΣ1(Xμ)=(2π)21(σ12)211e2(X1μ1)T(σ12)1(X1μ1)=2π σ11e2σ12(X1μ1)2

2、相互独立的2元高斯分布

此时
X = [ X 1 , X 2 ] T μ = [ μ 1 , μ 2 ] T σ = [ σ 1 , σ 2 ] T X i ∼ N ( μ i , σ i 2 ) Σ = [ σ 1 2 0 0 σ 2 2 ] \begin{split} X&=[X_1,X_2]^T\\ \mu&= [\mu_1,\mu_2]^T\\ \sigma&= [\sigma_1,\sigma_2]^T\\ X_i&\sim N(\mu_i,\sigma_i^2)\\ \Sigma&=\left[\begin{matrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \\ \end{matrix}\right] \end{split} XμσXiΣ=[X1,X2]T=[μ1,μ2]T=[σ1,σ2]TN(μi,σi2)=[σ1200σ22]
p ( X ) = p ( [ X 1 , X 2 ] T ) = 1 ( 2 π ) n 2 ⋅ ∣ Σ ∣ 1 2 ⋅ e − ( X − μ ) T Σ − 1 ( X − μ ) 2 = 1 ( 2 π ) 2 2 ⋅ ∣ σ 1 2 0 0 σ 2 2 ∣ 1 2 ⋅ e − ( [ X 1 X 2 ] − [ μ 1 μ 2 ] ) T [ σ 1 2 0 0 σ 2 2 ] − 1 ( [ X 1 X 2 ] − [ μ 1 μ 2 ] ) 2 = 1 2 π ⋅ σ 1 ⋅ σ 2 ⋅ e − [ X 1 − μ 1 X 2 − μ 2 ] T [ 1 σ 1 2 0 0 1 σ 2 2 ] [ X 1 − μ 1 X 2 − μ 2 ] 2 = 1 2 π ⋅ σ 1 ⋅ σ 2 ⋅ e − [ X 1 − μ 1 , X 2 − μ 2 ] [ 1 σ 1 2 0 0 1 σ 2 2 ] [ X 1 − μ 1 X 2 − μ 2 ] 2 = 1 2 π ⋅ σ 1 ⋅ σ 2 ⋅ e − [ X 1 − μ 1 σ 1 2 , X 2 − μ 2 σ 2 2 ] [ X 1 − μ 1 X 2 − μ 2 ] 2 = 1 2 π ⋅ σ 1 ⋅ σ 2 ⋅ e − ( X 1 − μ 1 ) 2 σ 1 2 − ( X 2 − μ 2 ) 2 σ 2 2 2 = 1 2 π ⋅ σ 1 ⋅ e − ( X 1 − μ 1 ) 2 2 σ 1 2 ⋅ 1 2 π ⋅ σ 2 ⋅ e − ( X 2 − μ 2 ) 2 2 σ 2 2 \begin{split} p(X)&=p([X_1,X_2]^T) \\ &=\frac{1}{(2\pi)^{\frac{n}{2}}\cdot|\Sigma|^{\frac{1}{2}}}\cdot e^{-\frac{(X-\mu)^T\Sigma^{-1}(X-\mu)}{2}} \\ &=\frac{1}{(2\pi)^{\frac{2}{2}}\cdot \left|\begin{matrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \\ \end{matrix}\right|^{\frac{1}{2}}}\cdot e^{-\frac{\Bigg(\left[\begin{matrix} X_1 \\ X_2 \\ \end{matrix}\right]-\left[\begin{matrix} \mu_1 \\ \mu_2 \\ \end{matrix}\right]\Bigg)^T\left[\begin{matrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \\ \end{matrix}\right]^{-1}\Bigg(\left[\begin{matrix} X_1 \\ X_2 \\ \end{matrix}\right]-\left[\begin{matrix} \mu_1 \\ \mu_2 \\ \end{matrix}\right]\Bigg)}{2}} \\ &=\frac{1}{2\pi\cdot \sigma_1\cdot \sigma_2}\cdot e^{-\frac{\left[\begin{matrix} X_1 -\mu_1\\ X_2 -\mu_2 \\ \end{matrix}\right]^T\left[\begin{matrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \\ \end{matrix}\right] \left[\begin{matrix} X_1-\mu_1 \\ X_2-\mu_2 \\ \end{matrix}\right]}{2}} \\ &=\frac{1}{2\pi\cdot \sigma_1\cdot \sigma_2}\cdot e^{-\frac{\left[\begin{matrix} X_1 -\mu_1, X_2 -\mu_2 \\ \end{matrix}\right]\left[\begin{matrix} \frac{1}{\sigma_1^2} & 0 \\ 0 & \frac{1}{\sigma_2^2} \\ \end{matrix}\right] \left[\begin{matrix} X_1-\mu_1 \\ X_2-\mu_2 \\ \end{matrix}\right]}{2}} \\ &=\frac{1}{2\pi\cdot \sigma_1\cdot \sigma_2}\cdot e^{-\frac{\left[\begin{matrix} \frac{X_1 -\mu_1}{\sigma_1^2}, \frac{X_2 -\mu_2}{\sigma_2^2} \\ \end{matrix}\right] \left[\begin{matrix} X_1-\mu_1 \\ X_2-\mu_2 \\ \end{matrix}\right]}{2}} \\ &=\frac{1}{2\pi\cdot \sigma_1\cdot \sigma_2}\cdot e^{-\frac{\frac{(X_1 -\mu_1)^2}{\sigma_1^2}-\frac{(X_2 -\mu_2)^2}{\sigma_2^2}}{2}} \\ &=\frac{1}{\sqrt{2\pi}\cdot \sigma_1}\cdot e^{-\frac{(X_1 -\mu_1)^2}{2\sigma_1^2}} \cdot \frac{1}{\sqrt{2\pi}\cdot \sigma_2}\cdot e^{-\frac{(X_2 -\mu_2)^2}{2\sigma_2^2}} \end{split} p(X)=p([X1,X2]T)=(2π)2n∣Σ211e2(Xμ)TΣ1(Xμ)=(2π)22 σ1200σ22 211e2([X1X2][μ1μ2])T[σ1200σ22]1([X1X2][μ1μ2])=2πσ1σ21e2[X1μ1X2μ2]T[σ12100σ221][X1μ1X2μ2]=2πσ1σ21e2[X1μ1,X2μ2][σ12100σ221][X1μ1X2μ2]=2πσ1σ21e2[σ12X1μ1,σ22X2μ2][X1μ1X2μ2]=2πσ1σ21e2σ12(X1μ1)2σ22(X2μ2)2=2π σ11e2σ12(X1μ1)22π σ21e2σ22(X2μ2)2

相关文章:

  • Java中String、Array、List的相互转换工具类
  • java实用工具类Localstorage
  • C++ 获取一整行(一行)字符串并转换为数字
  • GESP C++三级 知识点讲解
  • 随笔1 认识编译命令
  • JavaWeb开发基础知识-XML和JSON
  • Git分支管理
  • 【谷云科技iPaaS观点】如何通过iPaaS平台实现主数据高效同步
  • 华为磁电融合MED vs 铁电/闪存:存储技术新赛道!
  • redis高并发缓存架构与性能优化
  • 青少年编程与数学 02-016 Python数据结构与算法 04课题、栈与队列
  • UE5学习记录part14
  • Windows11 优雅的停止更新、禁止更新
  • 回归预测 | Matlab实现NRBO-Transformer-GRU多变量回归预测
  • 【Linux操作系统——学习笔记三】Linux环境下多级目录构建与管理的命令行实践报告
  • GTA6大型MOD地图
  • 使用docker搭建redis镜像时云服务器无法访问到国外的docker官网时如何解决
  • 瑞萨RA4M2使用心得-GPIO输出
  • [Deep-ML]Reshape Matrix(重塑矩阵)
  • 【Part 1全景视频拍摄与制作基础】第三节|全景视频后期拼接与处理流程
  • 怀来住房和城乡建设委员会网站/环球军事新闻最新消息
  • 网站推广工具推荐/欧美seo查询
  • 潜江做网站/免费seo网站诊断
  • 深圳彩页设计/seo的流程是怎么样的
  • 个人可做网站需要什么材料/网络推广怎么样
  • 临沂医院手机网站建设/韶关新闻最新今日头条