【C++11】lambda
lambda
lambda表达式语法
lambda表达式本质是一个匿名函数对象,跟普通函数不同的是它可以定义在函数内部。lambda表达式语法使用层而言没有类型,所以一般是用auto或者模板参数定义的对象去接收lambda对象。
lambda表达式的格式:[capture-list] (parameters) mutable-> return type { function boby }
[capture-list]
:捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]
来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用,捕捉列表可以传值和传引用捕捉。捕捉列表为空也不能省略。(parameters)
:参数列表,与普通函数的参数列表功能类似,如果不需要参数传递,则可以连同()
一起省略。mutable
(慎用):默认情况下,lambda表达式纵使一个const函数,mutable可以去下其常量性。->return type
:返回值类型,用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。一般返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。{function boby}
:函数体,函数体内的实现跟普通函数完全类似,在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量,函数体为空也不能省略。
注:在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空,但不能省略,因此C++11中最简单的lambda函数为[ ]{ }
;(该lambda函数不能做任何事情)
int main()
{
// 一个简单的lambda表达式
auto add1 = [](int x, int y)->int {return x + y; };
cout << add1(1, 2) << endl;
// 1、捕捉为空也不能省略
// 2、参数为空可以省略
// 3、返回值可以省略,可以通过返回对象自动推导
// 4、函数题不能省略
auto func1 = []
{
cout << "hello bit" << endl;
return 0;
};
func1();
int a = 0, b = 1;
auto swap1 = [](int& x, int& y)
{
int tmp = x;
x = y;
y = tmp;
};
swap1(a, b);
cout << a << ":" << b << endl;
return 0;
}
对于lambda表达式构造
- 允许一个lambda表达式拷贝构造一个新的副本
- 可以将lambda表达式赋值给相同类型的函数指针
void (*pf) ();
int main( )
{
auto f1=[ ]{cout<<"hello"<<endl;}
auto f2=[ ]{cout<<"hello"<<endl;}
//f1=f2 编译失败,找不到operator=( )
auto f3 (f2);//允许一个lambda表达式拷贝构造一个新的副本
pf =f2;//可以将lambda表达式赋值给相同类型的函数指针
pf();
}
捕捉列表
lambda表达式中默认只能用lambda函数体和参数中的变量,如果想用外层作用域中的变量就需要进行捕捉。而捕捉列表描述了上下文中哪些数据可以被lambda使用,以及使用方法(传值还是传引用)。
-
参数介绍
- [var] 表示传值方式捕捉变量 var
- [ = ] 表示值传递方式捕获所有父作用域中的变量(this)
- [ &var]表示引用传递捕捉变量var
- [ & ] 表示引用传递方式捕获所有父作用域中的变量
- [ this] 表示值传递方式捕获当前的this指针
-
捕捉方式
- 第一种捕捉方式是在捕捉列表中显示的传值捕捉和传引用捕捉,捕捉的多个变量用逗号分割。
[x, y, &z]
表示x和y值捕捉,z引用捕捉。 - 第二种捕捉方式是在捕捉列表中隐式捕捉,在捕捉列表写一个
=
表示隐式值捕捉,在捕捉列表写一个&
表示隐式引用捕捉,这样lambda表达式中用了哪些变量,编译器就会自动捕捉那些变量。 - 第三种捕捉方式是在捕捉列表中混合使用隐式捕捉和显示捕捉。
[=, &x]
表示其他变量隐式值捕捉,x引用捕捉;[&, x, y]
表示其他变量引用捕捉,x和y值捕捉。当使用混合捕捉时,第一个元素必须是&
或=
,并且&
混合捕捉时,后面的捕捉变量必须是值捕捉,同理=
混合捕捉时,后面的捕捉变量必须是引用捕捉。
- 第一种捕捉方式是在捕捉列表中显示的传值捕捉和传引用捕捉,捕捉的多个变量用逗号分割。
-
注:
- 父作用域包含lambda表达式的语句块
- 捕捉列表不允许变量重复传递,否则就会导致编译错误
- 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错
- lambda表达式如果定义在全局位置,捕捉列表必须为空
- 传值捕捉的过来的对象不能修改
lambda表达式如果在函数局部域中,它可以捕捉lambda位置之前定义的变量,不能捕捉静态局部变量和全局变量,静态局部变量和全局变量也不需要捕捉,lambda表达式中可以直接使用。这也意味着lambda表达式如果定义在全局位置,捕捉列表必须为空。
默认情况下,lambda捕捉列表是被const修饰的,也就是说传值捕捉的过来的对象不能修改,mutable
加在参数列表的后面可以取消其常量性,也就是说使用该修饰符后,传值捕捉的对象就可以修改了,但是修改还是形参对象,不会影响实参。使用该修饰符后,参数列表不可省略(即使参数为空)。
int x = 0;
// 捕捉列表必须为空,因为全局变量不用捕捉就可以用,没有可被捕捉的变量
auto func1 = []()
{
x++;
};
int main()
{
// 只能用当前lambda局部域和捕捉的对象和全局对象
int a = 0, b = 1, c = 2, d = 3;
auto func1 = [a, &b]
{
// 值捕捉的变量不能修改,引用捕捉的变量可以修改
//a++;
b++;
int ret = a + b;
return ret;
};
cout << func1() << endl;
// 隐式值捕捉
// 用了哪些变量就捕捉哪些变量
auto func2 = [=]
{
int ret = a + b + c;
return ret;
};
cout << func2() << endl;
// 隐式引用捕捉
// 用了哪些变量就捕捉哪些变量
auto func3 = [&]
{
c++;
d++;
};
func3();
cout << a <<" "<< b <<" "<< c <<" "<< d <<endl;
// 混合捕捉1
auto func4 = [&, a, b]
{
//a++;
//b++;
c++;
d++;
return a + b + c + d;
};
func4();
cout << a << " " << b << " " << c << " " << d << endl;
// 混合捕捉1
auto func5 = [=, &a, &b]
{
a++;
b++;
/*c++;
d++;*/
return a + b + c + d;
};
func5();
cout << a << " " << b << " " << c << " " << d << endl;
// 局部的静态和全局变量不能捕捉,也不需要捕捉
static int m = 0;
auto func6 = []
{
int ret = x + m;
return ret;
};
// 传值捕捉本质是一种拷贝,并且被const修饰了
// mutable相当于去掉const属性,可以修改了
// 但是修改了不会影响外面被捕捉的值,因为是一种拷贝
auto func7 = [=]()mutable
{
a++;
b++;
c++;
d++;
return a + b + c + d;
};
cout << func7() << endl;
cout << a << " " << b << " " << c << " " << d << endl;
return 0;
}
lambda的应用
在学习lambda表达式之前,使用的可调用对象只有函数指针和仿函数对象,函数指针的类型定义起来比较麻烦,仿函数要定义一个类,相对会比较麻烦。使用lambda去定义可调用对象,既简单又方便。
lambda在很多其他地方用起来也很好用。比如线程中定义线程的执行函数逻辑,智能指针中定制删除器等,lambda的应用还是很广泛的,以后会不断接触到。
struct Goods
{
string _name; // 名字
double _price; // 价格
int _evaluate; // 评价
// ...
Goods(const char* str, double price, int evaluate)
:_name(str)
, _price(price)
, _evaluate(evaluate)
{}
};
struct ComparePriceLess
{
bool operator()(const Goods& gl, const Goods& gr)
{
return gl._price < gr._price;
}
};
struct ComparePriceGreater
{
bool operator()(const Goods& gl, const Goods& gr)
{
return gl._price > gr._price;
}
};
int main()
{
vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2, 3 }, { "菠萝", 1.5, 4 } };
// 类似这样的场景,实现仿函数对象或者函数指针支持商品中不同项的比较,相对还是比较麻烦的,那么这里lambda就很好用了
sort(v.begin(), v.end(), ComparePriceLess());
sort(v.begin(), v.end(), ComparePriceGreater());
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
return g1._price < g2._price;
});
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
return g1._price > g2._price;
});
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
return g1._evaluate < g2._evaluate;
});
sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
return g1._evaluate > g2._evaluate;
});
return 0;
}
lambda的原理
lambda的原理和范围for很像,编译后从汇编指令层的角度看,压根就没有lambda和范围for这样的东西。范围for底层是迭代器,而lambda底层是仿函数对象,也就是说写了一个lambda以后,编译器会生成一个对应的仿函数的类。
仿函数的类名是编译按一定规则生成的,保证不同的lambda生成的类名不同,lambda参数/返回类型/函数体就是仿函数operator()
的参数/返回类型/函数体,lambda的捕捉列表本质是生成的仿函数类的成员变量,也就是说捕捉列表的变量都是lambda类构造函数的实参,当然隐式捕捉,编译器要看使用哪些就传那些对象。
class Rate
{
public:
Rate(double rate)
: _rate(rate)
{}
double operator()(double money, int year)
{
return money * _rate * year;
}
private:
double _rate;
};
int main()
{
double rate = 0.49;
// lambda
auto r2 = [rate](double money, int year) {
return money * rate * year;
};
// 函数对象
Rate r1(rate);
r1(10000, 2);
r2(10000, 2);
auto func1 = [] {
cout << "hello world" << endl;
};
func1();
return 0;
}