瞬间将模型改为原来的60-200倍小
目录
- 代码
- 解释
- 随机版本
- 向量版本
代码
import paddle
import faiss
from new_model_13 import GPT as GPT13
import pandas as pd
from sklearn.preprocessing import normalize
import json
import math
from collections import Counter
from tqdm import tqdm
import numpy as np
# 36 36
def gen_small_voc():
num = "0123456789" + 'qwertyuiopasdfghjklzxcvbnm' + "QWERTYUIOPASDFGHJKLZXCVBNM"
num = list(num)
small_em_voc = dict()
voc_id = 0
for i in range(16):
for n in num:
small_em_voc[voc_id] = "{}_{}".format(i, n)
voc_id += 1
return small_em_voc
def random_gen_voc():
num = "0123456789" + 'qwertyuiopasdfghjklzxcvbnm' + "QWERTYUIOPASDFGHJKLZXCVBNM"
num = list(num)
p_list = ["{}_{}".format(i, np.random.choice(num)) for i in range(16)]
return "#".join(p_list)
def gen_text_voc_to_token_id(text, large_em_voc, small_voc_em):
text = list(text)
text_list = []
for ii in text:
one = large_em_voc.get(ii, None)
if one is None:
while True:
two = random_gen_voc()
if large_em_voc.get(two, None) is None:
large_em_voc[two] = ii
large_em_voc[ii] = two
two = [small_voc_em.get(i) for i in two.split("#")]
text_list.append(two)
break
else:
two = [small_voc_em.get(i) for i in one.split("#")]
text_list.append(two)
return text_list, large_em_voc
def train():
with open("唐诗.json", "r", encoding="utf-8") as f:
data = f.read()
data = json.loads(data)
data = [i[4].split() for i in data if len(i[4].split()) > 3]
data = np.hstack(data)
data = [i for i in data if len("".join(i.split())) == 24 and "a" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "f" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "e" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "h" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "X" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "“" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '□' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '《' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '》' not in i]
small_em_voc = gen_small_voc()
small_voc_em = {k: v for v, k in small_em_voc.items()}
large_em_voc = dict()
model = GPT13(len(small_em_voc), 512, 32, 8)
# model.load_dict(paddle.load("gpt.pdparams"))
print("参数量:",
sum([i.shape[0] * i.shape[-1] if len(i.shape) > 1 else i.shape[-1] for i in model.parameters()]) / 1000000000,
"B")
loss_func = paddle.nn.CrossEntropyLoss()
opt = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=0.0003)
for epoch in range(190):
bar = tqdm(range(0, len(data), 1000))
for i in bar:
j = i + 1000
large_data = []
for one in data[i:j]:
two, large_em_voc = gen_text_voc_to_token_id(one, large_em_voc, small_voc_em)
large_data.append(two)
out, _ = model(paddle.to_tensor(large_data)[:, :-1])
loss = loss_func(out, paddle.to_tensor(large_data)[:, 1:].reshape([out.shape[0], -1]))
bar.set_description("epoch___{}__loss__{}".format(epoch, loss.item()))
opt.clear_grad()
loss.backward()
opt.step()
paddle.save(model.state_dict(), "duo_yang_xing.pkl")
pd.to_pickle(large_em_voc, "large_em_voc.pkl")
pd.to_pickle(small_em_voc, "small_em_voc.pkl")
def val():
with open("唐诗.json", "r", encoding="utf-8") as f:
data = f.read()
data = json.loads(data)
data = [i[4].split() for i in data if len(i[4].split()) > 3]
data = np.hstack(data)
data = [i for i in data if len("".join(i.split())) == 24 and "a" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "f" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "e" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "h" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "X" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "“" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '□' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '《' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '》' not in i]
small_em_voc = pd.read_pickle("small_em_voc.pkl")
small_voc_em = {k: v for v, k in small_em_voc.items()}
large_em_voc = pd.read_pickle("large_em_voc.pkl")
model = GPT13(len(small_em_voc), 512, 32, 8)
model.load_dict(paddle.load("duo_yang_xing.pkl"))
model.eval()
print("参数量:",
sum([i.shape[0] * i.shape[-1] if len(i.shape) > 1 else i.shape[-1] for i in model.parameters()]) / 1000000000,
"B")
word = data[38][:10]
df_large_voc = pd.DataFrame([i.split("#") for i in large_em_voc.keys() if len(i) > 10])
top_k=10
for _ in range(17):
two, large_em_voc = gen_text_voc_to_token_id(word, large_em_voc, small_voc_em)
out, _ = model(paddle.to_tensor(two).unsqueeze(0))
# 使用top_k
top = paddle.topk(out, top_k)
top = top[1][0, -16:]
top_0 = [[small_em_voc.get(i.item()) for i in top_0] for top_0 in top.T]
df_out=pd.DataFrame(top_0)
df_large_voc_copy=df_large_voc.copy()
for i in range(16):
df_large_voc_copy=df_large_voc_copy[df_large_voc_copy[i].isin(df_out[i])]
if len(df_large_voc_copy)<3:
break
# 进制 取数
if df_large_voc_copy.empty:
top_k+=1
continue
word += large_em_voc.get("#".join(df_large_voc_copy.values.tolist()[0]))
print(word)
top_k=10
if __name__ == '__main__':
# train()
val()
解释
这段代码的目的是创建一个词到ID的映射,以便于将文本数据转换为机器学习模型可以理解的数字格式。具体来说,这个映射是通过以下步骤构建的:
gen_small_voc
函数创建了一个包含所有可能字符(数字、大小写字母)的列表,并为每个字符生成了一个唯一的ID。这个ID是通过将字符与其在列表中的位置组合而成的。random_gen_voc
函数随机选择16个字符,并为它们生成一个唯一的ID。这个ID是通过将字符与其在列表中的位置组合而成的。gen_text_voc_to_token_id
函数接受一个文本字符串、一个大词表和一个小词表作为输入。对于文本中的每个字符,函数首先检查它是否已经在大词表中。如果不在,函数就会随机生成一个新的ID,并将其添加到大词表中。然后,函数将这个字符的ID(无论是已经存在的还是新创建的)转换为一个整数列表,并将其添加到输出列表中。
这个构建词表的过程的主要优点是,它可以处理任何文本数据,即使数据中包含未知的字符。这是因为如果遇到一个未知的字符,函数会自动为它生成一个新的ID,并将其添加到大词表中。这使得这个方法非常灵活,可以处理各种不同的文本数据。
import math
import paddle
import paddle.nn as nn
class MaxState(paddle.nn.Layer):
def __init__(self, hidden_dim, heads, win):
super(MaxState, self).__init__()
assert hidden_dim % heads == 0, "Hidden size must be divisible by the number of heads."
self.head_size = hidden_dim // heads
# self.head =paddle.nn.Linear(hidden_dim,2*hidden_dim,bias_attr=False)
self.head = paddle.nn.Linear(hidden_dim, hidden_dim, bias_attr=False)
# self.head_out =paddle.nn.Linear(hidden_dim*2,hidden_dim,bias_attr=False)
self.head_num = heads
self.win = win
self.hidden = hidden_dim
self.mask = paddle.triu(paddle.ones([win, win]))
def forward(self, input_data, state=None):
b, s, k, h, w = input_data.shape[0], input_data.shape[1], self.head_num, self.head_size, self.win
window = paddle.ones([1, w])
out = self.head(input_data)
out = out.unsqueeze(-1) @ window
out = out.transpose([0, 2, 1, 3])
one_list = []
if state is None:
state = paddle.ones([out.shape[0], out.shape[1], 1, 1]) * float("-inf")
for i in range(0, s, w):
j = w + i
one = out[:, :, i:j]
_, _, r, c = one.shape
if r != self.win:
one = paddle.where(self.mask[:r, :], one, paddle.to_tensor(-float('inf')))
else:
one = paddle.where(self.mask, one, paddle.to_tensor(-float('inf')))
one = paddle.concat([one, state @ window], axis=2)
state = paddle.max(one, axis=2, keepdim=True)
one = state.reshape([b, k, h, w])
state = state[..., -1:]
if r != self.win:
one = one[..., :r]
one = one.transpose([0, 3, 1, 2])
one_list.append(one)
out = paddle.concat(one_list, 1)
out = out.reshape([b, s, -1])
# out = self.head_out(out)
return out, state
class FeedForward(nn.Layer):
def __init__(self, hidden_size):
super(FeedForward, self).__init__()
self.ffn1 = nn.Linear(hidden_size, hidden_size * 2)
self.ffn2 = nn.Linear(hidden_size * 2, hidden_size)
self.gate = nn.Linear(hidden_size, hidden_size * 2)
self.relu = nn.Silu()
def forward(self, x):
x1 = self.ffn1(x)
x2 = self.relu(self.gate(x))
x = x1 * x2
x = self.ffn2(x)
return x
class RMSNorm(nn.Layer):
def __init__(self, dim, eps: float = 1e-6):
super(RMSNorm, self).__init__()
self.eps = eps
self.fc = paddle.create_parameter(shape=[dim], dtype='float32',
default_initializer=nn.initializer.Constant(value=1.0))
def norm(self, x):
return x * paddle.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self.norm(x)
return output * self.fc
class GPTDecoderLayer(nn.Layer):
def __init__(self, hidden_size, num_heads):
super(GPTDecoderLayer, self).__init__()
# self.self_attention = MaskMultiHeadAttention(hidden_size, num_heads)
self.self_attention = MaxState(hidden_size, num_heads, 8)
self.ffn = FeedForward(hidden_size)
self.norm = nn.LayerNorm(hidden_size)
self.norm1 = RMSNorm(hidden_size)
def forward(self, x, state=None, seq_len=None):
x1, state = self.self_attention(x, state) # Self-Attention with residual connection
x = x1 + x
x = self.norm(x)
x = self.ffn(x) + x # Feed-Forward with residual connection
x = self.norm1(x)
return x, state
class PositionalEncoding(nn.Layer):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
# Create a long enough Paddle array to hold position encodings for the maximum sequence length
position = paddle.arange(max_len).unsqueeze(1).astype("float32")
# Create a constant 'pe' matrix with the same size as the embedding matrix
div_term = paddle.exp(paddle.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = paddle.zeros([max_len, d_model])
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
self.pe = pe.unsqueeze(0) # Shape: [1, max_len, d_model]
# Register 'pe' as a buffer (non-trainable parameter)
def forward(self, x, seq_len=None):
# x is of shape [batch_size, seq_len, d_model]
if seq_len is None:
seq_len = x.shape[1]
return x + self.pe[:, :seq_len, :]
else:
return x + self.pe[:, seq_len - 1:seq_len, :]
# %%
def sinusoidal_position_embedding(max_len, output_dim):
# (max_len, 1)
position = paddle.arange(0, max_len, dtype="float32").unsqueeze(-1)
# (output_dim//2)
ids = paddle.arange(0, output_dim // 2, dtype="float32") # 即公式里的i, i的范围是 [0,d/2]
theta = 10000 ** (-2 * ids / output_dim)
# (max_len, output_dim//2)
embeddings = position * theta # 即公式里的:pos / (10000^(2i/d))
sin_embeddings = paddle.sin(embeddings)
cos_embeddings = paddle.cos(embeddings)
return sin_embeddings, cos_embeddings
def rope(q, sin_em, cos_em, seq_len=None):
if seq_len is None:
sin_em = sin_em[:q.shape[2]]
cos_em = cos_em[:q.shape[2]]
else:
sin_em = sin_em[seq_len - 1:seq_len]
cos_em = cos_em[seq_len - 1:seq_len]
q1 = q.reshape([q.shape[0], q.shape[1], q.shape[2], -1, 2])[..., 1]
q2 = q.reshape([q.shape[0], q.shape[1], q.shape[2], -1, 2])[..., 0]
# 奇数负值*sin_em+偶数正值*cos_em 奇数正值*cos_em+偶数正值*sin_em
q3 = paddle.stack([-q1 * sin_em + q2 * cos_em, q1 * cos_em + q2 * sin_em], -1)
q = q3.reshape(q.shape) # reshape后就是正负交替了
return q
class GPT(nn.Layer):
def __init__(self, vocab_size, hidden_size, num_heads, num_layers):
super(GPT, self).__init__()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.label_embedding = nn.Embedding(vocab_size, hidden_size)
self.decoder_layers = nn.LayerList([GPTDecoderLayer(hidden_size, num_heads) for _ in range(num_layers)])
self.fc = nn.Linear(hidden_size, vocab_size, bias_attr=False)
self.sin_em, self.cos_em = sinusoidal_position_embedding(50000, hidden_size // num_heads // 2)
self.conv=paddle.nn.Conv1D(1,16,kernel_size=3,padding=1,bias_attr=False)
self.out = nn.Linear(16, 16, bias_attr=False)
self.layer_nor= paddle.nn.LayerNorm(hidden_size)
# self.rms_norm=RMSNorm(hidden_size)
def forward(self, xx, state=None, seq_len=None):
xx = self.embedding(xx)
# x = self.position_embedding(x, seq_len)
x = paddle.max(xx, -2)
if state is None:
state = [None] * len(self.decoder_layers)
i = 0
x = rope(x.reshape([x.shape[0], x.shape[1], -1, self.sin_em.shape[1] * 2]).transpose([0, 2, 1, 3]),
self.sin_em,
self.cos_em, seq_len).transpose([0, 2, 1, 3]).reshape(x.shape) + x
for decoder_layer in self.decoder_layers:
x1, state[i] = decoder_layer(x, state[i])
x = x1 + x
i += 1
# out = self.fc(self.rms_norm(x))
out = self.conv(x.reshape([-1, 1, x.shape[-1]]))+xx.reshape([-1, 16, x.shape[-1]])
out = out.reshape([x.shape[0],-1,x.shape[-1]])
out = self.fc(self.layer_nor(out))
return out, state
随机版本
def val():
with open("唐诗.json", "r", encoding="utf-8") as f:
data = f.read()
data = json.loads(data)
data = [i[4].split() for i in data if len(i[4].split()) > 3]
data = np.hstack(data)
data = [i for i in data if len("".join(i.split())) == 24 and "a" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "f" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "e" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "h" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "X" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "“" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '□' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '《' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '》' not in i]
small_em_voc = pd.read_pickle("small_em_voc.pkl")
small_voc_em = {k: v for v, k in small_em_voc.items()}
large_em_voc = pd.read_pickle("large_em_voc.pkl")
model = GPT13(len(small_em_voc), 512, 32, 8)
model.load_dict(paddle.load("duo_yang_xing.pkl"))
model.eval()
print("参数量:",
sum([i.shape[0] * i.shape[-1] if len(i.shape) > 1 else i.shape[-1] for i in model.parameters()]) / 1000000000,
"B")
word = data[38][:10]
df_large_voc = pd.DataFrame([i.split("#") for i in large_em_voc.keys() if len(i) > 10])
top_k=10
for _ in range(17):
two, large_em_voc = gen_text_voc_to_token_id(word, large_em_voc, small_voc_em)
out, _ = model(paddle.to_tensor(two).unsqueeze(0))
# 使用top_k
top = paddle.topk(out, top_k)
top = top[1][0, -16:]
top_0 = [[small_em_voc.get(i.item()) for i in top_0] for top_0 in top.T]
df_out=pd.DataFrame(top_0)
df_large_voc_copy=df_large_voc.copy()
for i in np.random.choice(list(range(16)),16,replace=False):
df_large_voc_copy=df_large_voc_copy[df_large_voc_copy[i].isin(df_out[i])]
if len(df_large_voc_copy)<3:
break
# 进制 取数
if df_large_voc_copy.empty:
top_k+=1
continue
word += large_em_voc.get("#".join(df_large_voc_copy.values.tolist()[0]))
print(word)
top_k=10
向量版本
def val():
with open("唐诗.json", "r", encoding="utf-8") as f:
data = f.read()
data = json.loads(data)
data = [i[4].split() for i in data if len(i[4].split()) > 3]
data = np.hstack(data)
data = [i for i in data if len("".join(i.split())) == 24 and "a" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "f" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "e" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "h" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "X" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and "“" not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '□' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '《' not in i]
data = [i for i in data if len("".join(i.split())) == 24 and '》' not in i]
small_em_voc = pd.read_pickle("small_em_voc.pkl")
small_voc_em = {k: v for v, k in small_em_voc.items()}
large_em_voc = pd.read_pickle("large_em_voc.pkl")
model = GPT13(len(small_em_voc), 512, 32, 8)
model.load_dict(paddle.load("duo_yang_xing.pkl"))
model.eval()
print("参数量:",
sum([i.shape[0] * i.shape[-1] if len(i.shape) > 1 else i.shape[-1] for i in model.parameters()]) / 1000000000,
"B")
k_list = []
v_list = []
for k, v in large_em_voc.items():
if len(k) <= 1:
# one = paddle.max(
# model.embedding(paddle.to_tensor([small_voc_em.get(i) for i in v.split("#")]).reshape([1, -1])), 1)
one =model.embedding(paddle.to_tensor([small_voc_em.get(i) for i in v.split("#")]).reshape([1, -1]))
# faiss_index.add(one)
v_list.append(one)
k_list.append(k)
word = data[0][:10]
for _ in range(17):
two, large_em_voc = gen_text_voc_to_token_id(word, large_em_voc, small_voc_em)
out, _ = model(paddle.to_tensor(two).unsqueeze(0))
out = paddle.argmax(out, -1)[:, -16:]
out_num = [small_em_voc.get(i.item()) for i in out[0]]
out_voc = large_em_voc.get("#".join(out_num))
if out_voc is None:
# out_em = paddle.max(model.embedding(out), 1)
out_em = model.embedding(out)
out_sort = np.argsort([paddle.nn.functional.cosine_similarity(out_em.reshape([1,-1]), i.reshape([1,-1])).item() for i in v_list])
word += k_list[out_sort[-1]]
else:
word += out_voc
print(word)