基于Deepface的情绪识别c++
基于Deepface的情绪识别c++
文章目录
- 基于Deepface的情绪识别c++
- 简介
- 下载模型并转为onnx(facial_expression_model_weights.h5)
- 测试
- 取出照片的人脸部分并处理成模型输入格式
- 用模型推理一下看看结果
- 用onnxruntime的c++库推理
简介
DeepFace是一个基于深度学习的开源人脸识别与属性分析框架,其情绪识别模块通过卷积神经网络(CNN)架构实现了对7种基础情绪(生气、厌恶、恐惧、开心、悲伤、惊讶、中性)的高精度分类。该技术结合了OpenCV的图像处理能力,支持从人脸检测、对齐到情绪预测的全流程自动化处理,准确率高达97.53%,超越人类平均水平。其核心模型如VGG-Face、ArcFace等通过大规模数据集(如FER2013、AffectNet)训练,能够捕捉面部微表情的细微差异。(以上内容来着deepseek)
下载模型并转为onnx(facial_expression_model_weights.h5)
这是情绪识别部分的源码
# stdlib dependencies
from typing import List, Union
# 3rd party dependencies
import numpy as np
import cv2
# project dependencies
from deepface.commons import package_utils, weight_utils
from deepface.models.Demography import Demography
from deepface.commons.logger import Logger
# dependency configuration
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
else:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (
Conv2D,
MaxPooling2D,
AveragePooling2D,
Flatten,
Dense,
Dropout,
)
# Labels for the emotions that can be detected by the model.
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
logger = Logger()
# pylint: disable=line-too-long, disable=too-few-public-methods
WEIGHTS_URL = "https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5"
class EmotionClient(Demography):
"""
Emotion model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "Emotion"
def _preprocess_image(self, img: np.ndarray) -> np.ndarray:
"""
Preprocess single image for emotion detection
Args:
img: Input image (224, 224, 3)
Returns:
Preprocessed grayscale image (48, 48)
"""
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray = cv2.resize(img_gray, (48, 48))
return img_gray
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
"""
Predict emotion probabilities for single or multiple faces
Args:
img: Single image as np.ndarray (224, 224, 3) or
List of images as List[np.ndarray] or
Batch of images as np.ndarray (n, 224, 224, 3)
Returns:
np.ndarray (n, n_emotions)
where n_emotions is the number of emotion categories
"""
# Preprocessing input image or image list.
imgs = self._preprocess_batch_or_single_input(img)
processed_imgs = np.expand_dims(np.array([self._preprocess_image(img) for img in imgs]), axis=-1)
# Prediction
predictions = self._predict_internal(processed_imgs)
return predictions
def load_model(
url=WEIGHTS_URL,
) -> Sequential:
"""
Consruct emotion model, download and load weights
"""
num_classes = 7
model = Sequential()
# 1st convolution layer
model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1)))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2)))
# 2nd convolution layer
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
# 3rd convolution layer
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Flatten())
# fully connected neural networks
model.add(Dense(1024, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(1024, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation="softmax"))
# ----------------------------
weight_file = weight_utils.download_weights_if_necessary(
file_name="facial_expression_model_weights.h5", source_url=url
)
model = weight_utils.load_model_weights(model=model, weight_file=weight_file)
return model
下载模型并转为onnx
import tensorflow as tf
import tf2onnx
import onnx
# 1. 加载原始模型
model = load_model()
# 2. 定义输入签名
input_signature = [tf.TensorSpec(shape=(None, 48, 48, 1), dtype=tf.float32, name='input')]
# 3. 转换为ONNX
onnx_model, _ = tf2onnx.convert.from_keras(
model,
input_signature=input_signature,
opset=13,
output_path="deepface_emotion.onnx"
)
测试
取出照片的人脸部分并处理成模型输入格式
测试图片:
取出人脸图片:
import cv2
import matplotlib.pyplot as plt
#处理成输入格式
img = cv2.imread("../img/test2_face.jpg")
img = img.astype(np.float32)/255.0
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_gray = cv2.resize(img_gray, (48, 48))
gray_img = np.expand_dims(img_gray, axis=-1)
test_input = np.expand_dims(gray_img, axis=0)
用模型推理一下看看结果
import onnxruntime as ort
import numpy as np
# 加载ONNX模型
ort_session = ort.InferenceSession("deepface_emotion.onnx", providers=['CPUExecutionProvider'])
# 运行推理
outputs = ort_session.run(None, {'input': test_input})
print("预测概率:", outputs[0])
# 获取预测结果
predicted_class = np.argmax(outputs[0])
print("预测类别:", predicted_class)
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
print(f"预测类型:{labels[predicted_class]},概率:{outputs[0][0][predicted_class]:.2f}")
结果:
预测概率: [[2.0709881e-10 1.9225350e-18 4.2878087e-06 9.9998260e-01 1.3058154e-05
1.4756028e-11 1.7358280e-08]]
预测类别: 3
预测类型:happy,概率:1.00
用onnxruntime的c++库推理
#pragma once
#include <iostream>
#include <numeric> //数值计算
#include <tuple> //C++17 元组
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>
namespace LIANGBAIKAI_BASE_MODEL_NAME
{
#define ORT_OLD_VISON 12 // ort1.12.0 之前的版本为旧版本API
class Deepface_Emotion_Onnxruntime
{
public:
enum Severity_log
{
E_INTERNAL_ERROR = 0, // 内部错误
E_ERROR = 1, // 一般错误
E_WARNING = 2, // 警告
E_INFO = 3, // 信息
};
Deepface_Emotion_Onnxruntime() : _OrtMemoryInfo(Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtDeviceAllocator, OrtMemType::OrtMemTypeCPUOutput)) {};
virtual ~Deepface_Emotion_Onnxruntime() {};
/**
* @description: 设置日志等级
* @param {Severity_log} severity
* @return {*}
*/
virtual void setReportableSeverity(Severity_log severity)
{
_reportableSeverity = severity;
log(E_INFO, "reportableSeverity set to " + std::to_string(severity));
}
/**
* @description:
* @param {string} &modelPath 模型文件
* @param {int} netWidth 模型输入尺寸宽
* @param {int} netHeight 模型输入尺寸高
* @param {bool} isCuda 是否使用cuda
* @param {int} cudaID cuda的id
* @param {bool} warmUp warm up gpu-model
* @return {*} 返回是否初始化成功
*/
bool init(const std::string &modelPath, int netWidth = 48, int netHeight = 48, bool isCuda = true, int cudaID = 0, bool warmUp = true)
{
_netWidth = netWidth;
_netHeight = netHeight;
bool rec = ReadModel(modelPath, isCuda, cudaID, warmUp);
return rec;
}
/**
* @description: 推理
* @param {cv::Mat} &img : 输入人脸图片
* @return {std::tuple<int, float>} 返回情绪,置信度
*/
std::tuple<int, float> infer(const cv::Mat &img)
{
log(E_INFO, "infer");
cv::Mat img_tmp = img.clone();
cv::resize(img_tmp, img_tmp, cv::Size(224, 224));
cv::Mat normalizedImage;
// cv::normalize(img_tmp, normalizedImage, 0, 1, cv::NORM_MINMAX, CV_32F); // 归一化 结果与python的源码结果有一点偏差,用下面的方法
img_tmp.convertTo(normalizedImage, CV_32F, 1.0 / 255.0);
cv::Mat resizedImage;
cv::resize(normalizedImage, resizedImage, cv::Size(_netWidth, _netHeight));
cv::Mat grayImage;
cv::cvtColor(resizedImage, grayImage, cv::COLOR_BGR2GRAY);
cv::Mat blob;
cv::dnn::blobFromImage(grayImage, blob, 1.0, cv::Size(0, 0), cv::Scalar(0), false, false);
int64_t input_tensor_length = VectorProduct(_inputTensorShape);
std::vector<Ort::Value> input_tensors;
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(_OrtMemoryInfo, (float *)blob.data, input_tensor_length, _inputTensorShape.data(), _inputTensorShape.size()));
log(E_INFO, "infer run");
output_tensors = _OrtSession->Run(Ort::RunOptions{nullptr},
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size());
float *all_data = output_tensors[0].GetTensorMutableData<float>();
int max_index = 0;
float max_value = 0.0f;
for (int i = 0; i < _outputTensorShape[1]; i++)
{
log(E_INFO, "result" + std::to_string(i) + ": " + std::to_string(all_data[i]));
if (all_data[i] > max_value)
{
max_value = all_data[i];
max_index = i;
}
}
return std::make_tuple(max_index, max_value * 99.99);
}
private:
/**
* @description: 读取onnx模型
* @param {string} &modelPath : onnx模型路径
* @param {bool} isCuda: 如果为true,使用Ort-GPU,否则在cpu上运行。
* @param {int} cudaID: 如果isCuda==true,在cudaID上运行Ort-GPU。
* @param {bool} warmUp: 如果isCuda==true,预热GPU-model。
* @return {*}
*/
bool ReadModel(const std::string &modelPath, bool isCuda = true, int cudaID = 0, bool warmUp = true)
{
if (_batchSize < 1)
{
_batchSize = 1;
}
try
{
// 列出可用的推理提供者 cpu cuda dml tensorrt openvino
std::vector<std::string> available_providers = Ort::GetAvailableProviders();
auto cuda_available = std::find(available_providers.begin(), available_providers.end(), "CUDAExecutionProvider");
if (isCuda && (cuda_available == available_providers.end()))
{
log(E_ERROR, "Your ORT build without GPU. Change to CPU.");
log(E_INFO, "************* Infer model on CPU! *************");
}
else if (isCuda && (cuda_available != available_providers.end()))
{
log(E_INFO, "************* Infer model on GPU! *************");
#if ORT_API_VERSION < ORT_OLD_VISON
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = cudaID;
_OrtSessionOptions.AppendExecutionProvider_CUDA(cudaOption);
#else
// 添加CUDA执行提供者
OrtStatus *status = OrtSessionOptionsAppendExecutionProvider_CUDA(_OrtSessionOptions, cudaID);
if (status != NULL)
{
log(E_ERROR, "OrtSessionOptionsAppendExecutionProvider_CUDA ERROR");
}
#endif
}
else
{
log(E_INFO, "************* Infer model on CPU! *************");
}
// 设置图优化级别
_OrtSessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
#ifdef _WIN32
std::wstring model_path(modelPath.begin(), modelPath.end());
_OrtSession = std::make_shared<Ort::Session>(_OrtEnv, modelPath.c_str(), _OrtSessionOptions);
#else
// 创建会话
_OrtSession = std::make_shared<Ort::Session>(_OrtEnv, modelPath.c_str(), _OrtSessionOptions);
#endif
// 创建默认的内存分配器
Ort::AllocatorWithDefaultOptions allocator;
// 初始化输入
_inputNodesNum = _OrtSession->GetInputCount();
#if ORT_API_VERSION < ORT_OLD_VISON
_inputName = _OrtSession->GetInputName(0, allocator);
_inputNodeNames.push_back(_inputName);
#else
// 获取输入名称
_inputName = std::move(_OrtSession->GetInputNameAllocated(0, allocator));
_inputNodeNames.push_back(_inputName.get());
#endif
// 获取输入类型信息
Ort::TypeInfo inputTypeInfo = _OrtSession->GetInputTypeInfo(0);
// 获取输入张量类型和形状信息
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
// 获取输入数据类型
_inputNodeDataType = input_tensor_info.GetElementType();
// 获取输入张量形状
_inputTensorShape = input_tensor_info.GetShape();
if (_inputTensorShape[0] == -1)
{
_isDynamicShape = true;
_inputTensorShape[0] = _batchSize;
}
if (_inputTensorShape[2] == -1 || _inputTensorShape[3] == -1)
{
_isDynamicShape = true;
_inputTensorShape[2] = _netHeight;
_inputTensorShape[3] = _netWidth;
}
// 获取输出节点数
_outputNodesNum = _OrtSession->GetOutputCount();
// 获取输出名称
#if ORT_API_VERSION < ORT_OLD_VISON
_output_name0 = _OrtSession->GetOutputName(0, allocator);
_outputNodeNames.push_back(_output_name0);
#else
_output_name0 = std::move(_OrtSession->GetOutputNameAllocated(0, allocator));
_outputNodeNames.push_back(_output_name0.get());
#endif
Ort::TypeInfo type_info_output0(nullptr);
type_info_output0 = _OrtSession->GetOutputTypeInfo(0); // output0
// 获取输出张量类型和形状信息
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
// 获取输出数据类型
_outputNodeDataType = tensor_info_output0.GetElementType();
// 获取输出张量形状
_outputTensorShape = tensor_info_output0.GetShape();
log(E_INFO, "inputNodesNum:" + std::to_string(_inputNodesNum));
log(E_INFO, "inputNodeNames:" + std::string(_inputNodeNames[0]));
std::string inputTensorShapeStr = " ";
for (unsigned int i = 0; i < _inputTensorShape.size(); i++)
{
inputTensorShapeStr += std::to_string(_inputTensorShape[i]) + " ";
}
log(E_INFO, "inputTensorShape:" + inputTensorShapeStr);
log(E_INFO, "outputNodesNum:" + std::to_string(_outputNodesNum));
log(E_INFO, "outputNodeNames:" + std::string(_outputNodeNames[0]));
std::string outputTensorShapeStr = " ";
for (unsigned int i = 0; i < _outputTensorShape.size(); i++)
{
outputTensorShapeStr += std::to_string(_outputTensorShape[i]) + " ";
}
log(E_INFO, "outputTensorShape:" + outputTensorShapeStr);
log(E_INFO, "outputNodeDataType:" + std::to_string(_outputNodeDataType));
// warm up
if (isCuda && warmUp)
{
// draw run
log(E_INFO, "Start warming up");
// 计算输入张量长度
size_t input_tensor_length = VectorProduct(_inputTensorShape);
float *temp = new float[input_tensor_length];
// 创建输入张量
std::vector<Ort::Value> input_tensors;
// 创建输出张量
std::vector<Ort::Value> output_tensors;
input_tensors.push_back(Ort::Value::CreateTensor<float>(
_OrtMemoryInfo, temp, input_tensor_length, _inputTensorShape.data(),
_inputTensorShape.size()));
for (int i = 0; i < 3; ++i)
{
output_tensors = _OrtSession->Run(Ort::RunOptions{nullptr},
_inputNodeNames.data(),
input_tensors.data(),
_inputNodeNames.size(),
_outputNodeNames.data(),
_outputNodeNames.size());
}
delete[] temp;
}
}
catch (const std::exception &)
{
log(E_ERROR, "read model error !");
return false;
}
log(E_INFO, "read model success !");
return true;
}
void log(Severity_log severity, const std::string msg) noexcept
{
// 根据严重性级别决定是否打印日志
if (severity <= _reportableSeverity)
{
switch (severity)
{
case Severity_log::E_INTERNAL_ERROR:
std::cerr << "[INTERNAL ERROR] " << msg << std::endl;
break;
case Severity_log::E_ERROR:
std::cerr << "[ERROR] " << msg << std::endl;
break;
case Severity_log::E_WARNING:
std::cerr << "[WARNING] " << msg << std::endl;
break;
case Severity_log::E_INFO:
std::cout << "[INFO] " << msg << std::endl;
break;
default:
break;
}
}
}
// 计算向量中所有元素的乘积
template <typename T>
T VectorProduct(const std::vector<T> &v)
{
return std::accumulate(v.begin(), v.end(), 1, std::multiplies<T>());
};
int _netWidth = 48; // ONNX-net-input-width
int _netHeight = 48; // ONNX-net-input-height
int _batchSize = 1; // if multi-batch,set this
bool _isDynamicShape = false; // onnx support dynamic shape
// ONNXRUNTIME
Ort::Env _OrtEnv = Ort::Env(OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "Resnet");
Ort::SessionOptions _OrtSessionOptions = Ort::SessionOptions();
std::shared_ptr<Ort::Session> _OrtSession;
Ort::MemoryInfo _OrtMemoryInfo;
#if ORT_API_VERSION < ORT_OLD_VISON
char *_inputName, *_output_name0;
#else
std::shared_ptr<char> _inputName, _output_name0;
#endif
std::vector<char *> _inputNodeNames; // 输入节点名
std::vector<char *> _outputNodeNames; // 输出节点名
size_t _inputNodesNum = 0; // 输入节点数
size_t _outputNodesNum = 0; // 输出节点数
ONNXTensorElementDataType _inputNodeDataType; // 数据类型
ONNXTensorElementDataType _outputNodeDataType;
std::vector<int64_t> _inputTensorShape; // 输入张量shape
std::vector<int64_t> _outputTensorShape;
Severity_log _reportableSeverity = Severity_log::E_ERROR;
};
}
完整项目代码