2015年国家队选拔赛试题改编题
设有等腰三角形 △ A B C \triangle ABC △ABC, A B = A C > B C AB=AC>BC AB=AC>BC. D D D 为 △ A B C \triangle ABC △ABC 内一点, 满足 D A = D B + D C DA=DB+DC DA=DB+DC. 边 A B AB AB 的中垂线交 ∠ A D B \angle ADB ∠ADB 的外角平分线于点 P P P, 边 A C AC AC 的中垂线交 ∠ A D C \angle ADC ∠ADC 的外角平分线于 Q Q Q. 设 O Q OQ OQ, B C BC BC 交于一点 T T T. 求证: (1) ∠ Q B C = ∠ A D B 2 \angle QBC=\frac{\angle ADB}{2} ∠QBC=2∠ADB, ∠ P C B = ∠ A D C 2 \angle PCB=\frac{\angle ADC}{2} ∠PCB=2∠ADC. (2) T B / T C = B D / C D TB/TC=BD/CD TB/TC=BD/CD. (2015年国家队选拔赛试题改编题)
引理. 自两圆 ⊙ O 1 \odot O_1 ⊙O1 (半径 r 1 r_1 r1), ⊙ O 2 \odot O_2 ⊙O2 (半径 r 2 r_2 r2) 的内位似中心 I I I 出发引一条直线, 分别交 ⊙ O 1 \odot O_1 ⊙O1 和 ⊙ O 2 \odot O_2 ⊙O2 为 A A A, B B B 与 A ′ A' A′, B ′ B' B′, 其中 A A A 和 A ′ A' A′ 为内位似对应关系下的对应点, B B B 和 B ′ B' B′ 亦然. 则 I A ⋅ I B ′ = I A ′ ⋅ I B = p o w ( I IA \cdot IB' = IA' \cdot IB = \mathrm{pow}(I IA⋅IB′=IA′⋅IB=pow(I, ⊙ O 2 ) r 1 r 2 = p o w ( I \odot O_2) \frac{r_1}{r_2} = \mathrm{pow}(I ⊙O2)r2r1=pow(I, ⊙ O 1 ) r 2 r 1 \odot O_1) \frac{r_2}{r_1} ⊙O1)r1r2.
引理的证明略.
证明:
显然, D P DP DP 过 ( A D B ) (ADB) (ADB) 的弧 A D B ADB ADB 的中点, 而该点在 A B AB AB 的中垂线上, 因此即为 P P P. 由此可知 A A A, B B B, D D D, P P P 四点共圆. 同理, A A A, C C C, D D D, Q Q Q 四点共圆.
由托勒密定理得 P A ⋅ B D + D P ⋅ A B = A D ⋅ B P PA \cdot BD+DP \cdot AB=AD \cdot BP PA⋅BD+DP⋅AB=AD⋅BP.
A P = B P AP=BP AP=BP, 所以 A P ⋅ ( A D − B D ) = A P ⋅ C D = D P ⋅ A B AP \cdot (AD-BD) = AP \cdot CD = DP \cdot AB AP⋅(AD−BD)=AP⋅CD=DP⋅AB. ⇒ A P / D P = A B / C D = A C / C D \Rightarrow AP/DP=AB/CD=AC/CD ⇒AP/DP=AB/CD=AC/CD.
同理, A Q / Q D = A B / B D = A C / B D AQ/QD=AB/BD=AC/BD AQ/QD=AB/BD=AC/BD.
设 ( A P B ) (APB) (APB) 与 ( A P C ) (APC) (APC) 的内位似中心为点 X X X. 证明 C P CP CP 经过 X X X :
延长 X P XP XP 交 ( A D C ) (ADC) (ADC) 于点 C ′ C' C′.
P P P 与 C ′ C' C′, D D D 与 D D D, A A A 与 A A A 互为逆对应点. 根据引理, X D 2 = X A 2 = X P ⋅ X C ′ XD^2=XA^2 = XP \cdot XC' XD2=XA2=XP⋅XC′. 由此易知 A C ′ / C ′ D = A P / D P = A C / C D AC'/C'D=AP/DP=AC/CD AC′/C′D=AP/DP=AC/CD. 显然 C C C 即 C ′ C' C′. 所以 C P CP CP 经过 X X X.
同理, B D BD BD 经过 X X X.
由引理可知, X Q ⋅ X B = X D 2 = X P ⋅ X C XQ \cdot XB=XD^2=XP \cdot XC XQ⋅XB=XD2=XP⋅XC. 所以 P P P, Q Q Q, B B B, C C C 四点共圆.
由根心定理, B P BP BP, C Q CQ CQ, A D AD AD 三线共点, 设该点为 J J J.
sin ∠ X C B / sin ∠ X B C = B P / C Q = A P / A Q = A P / A B A Q / A C = sin ( ∠ A D C / 2 ) sin ( ∠ A D B / 2 ) \sin \angle XCB/\sin \angle XBC=BP/CQ=AP/AQ=\frac{AP/AB}{AQ/AC}=\frac{\sin(\angle ADC /2)}{\sin(\angle ADB/2)} sin∠XCB/sin∠XBC=BP/CQ=AP/AQ=AQ/ACAP/AB=sin(∠ADB/2)sin(∠ADC/2).
由 X A 2 = X P ⋅ X C XA^2=XP \cdot XC XA2=XP⋅XC 可知 ∠ X A P = ∠ X C A \angle XAP=\angle XCA ∠XAP=∠XCA, 由 X A 2 = X Q ⋅ X B XA^2=XQ \cdot XB XA2=XQ⋅XB 可知 ∠ X A Q = ∠ X B A \angle XAQ =\angle XBA ∠XAQ=∠XBA. ∠ P A Q = ∠ Q B A + ∠ P C A \angle PAQ=\angle QBA+\angle PCA ∠PAQ=∠QBA+∠PCA.
∠ B X C = ∠ Q B A + ∠ P C A + ∠ B A C = ∠ Q B A + ∠ P C A + ( ∠ P A B + ∠ Q A C − ∠ B A C ) = ∠ P A B + ∠ Q A C = π − ∠ A D B 2 + π − ∠ A D C 2 \angle BXC=\angle QBA+\angle PCA+\angle BAC=\angle QBA+\angle PCA+(\angle PAB+\angle QAC-\angle BAC)\\=\angle PAB+\angle QAC=\frac{\pi-\angle ADB}{2}+\frac{\pi-\angle ADC}{2} ∠BXC=∠QBA+∠PCA+∠BAC=∠QBA+∠PCA+(∠PAB+∠QAC−∠BAC)=∠PAB+∠QAC=2π−∠ADB+2π−∠ADC.
进而 ∠ X B C + ∠ X C B = π − ∠ B X C = ∠ A D B 2 + ∠ A D C 2 \angle XBC+\angle XCB=\pi-\angle BXC=\frac{\angle ADB}{2}+\frac{\angle ADC}{2} ∠XBC+∠XCB=π−∠BXC=2∠ADB+2∠ADC.
结合 sin ∠ X C B / sin ∠ X B C = sin ( ∠ A D C / 2 ) sin ( ∠ A D B / 2 ) \sin \angle XCB/\sin \angle XBC=\frac{\sin(\angle ADC /2)}{\sin(\angle ADB/2)} sin∠XCB/sin∠XBC=sin(∠ADB/2)sin(∠ADC/2), 可知 ∠ X C B = ∠ A D C / 2 \angle XCB=\angle ADC /2 ∠XCB=∠ADC/2, ∠ X B C = ∠ A D B / 2 \angle XBC=\angle ADB /2 ∠XBC=∠ADB/2.
由梅涅劳斯定理, 只需证明: X Q X P ⋅ C P B Q = C D B D \frac{XQ}{XP} \cdot \frac{CP}{BQ} = \frac{CD}{BD} XPXQ⋅BQCP=BDCD.
X Q / X P = X C / X B = sin ∠ X B C / sin ∠ X C B = Q C / P B XQ/XP=XC/XB=\sin \angle XBC/\sin \angle XCB=QC/PB XQ/XP=XC/XB=sin∠XBC/sin∠XCB=QC/PB.
C P / B Q = P J / Q J CP/BQ=PJ/QJ CP/BQ=PJ/QJ.
只需证明: P J / P B Q J / Q C = C D B D \frac{PJ/PB}{QJ/QC}=\frac{CD}{BD} QJ/QCPJ/PB=BDCD.
由面积法易知 P J / P B = ( A J / A B ) ⋅ ( sin ∠ P A D / sin ∠ P A B ) = ( A J / A B ) ⋅ ( sin ∠ P A D / sin ∠ P D A ) = D P / A P PJ/PB=(AJ/AB)\cdot (\sin \angle PAD/ \sin \angle PAB)=(AJ/AB)\cdot (\sin \angle PAD/ \sin \angle PDA)=DP/AP PJ/PB=(AJ/AB)⋅(sin∠PAD/sin∠PAB)=(AJ/AB)⋅(sin∠PAD/sin∠PDA)=DP/AP, 类似地, 可得 Q J / Q C = ( A J / A C ) ⋅ ( D Q / A Q ) QJ/QC=(AJ/AC) \cdot (DQ/AQ) QJ/QC=(AJ/AC)⋅(DQ/AQ).
C D B D = C D / A C B D / A B = D P / A P D Q / A Q = P J / P B Q J / Q C \frac{CD}{BD}=\frac{CD/AC}{BD/AB}=\frac{DP/AP}{DQ/AQ}=\frac{PJ/PB}{QJ/QC} BDCD=BD/ABCD/AC=DQ/AQDP/AP=QJ/QCPJ/PB.
所以 T B / T C = B D / C D TB/TC=BD/CD TB/TC=BD/CD 成立.
证毕.