当前位置: 首页 > wzjs >正文

adobe做网站的软件常用的seo网站优化排名

adobe做网站的软件,常用的seo网站优化排名,邢台专业网站建设公司,vi设计案例ppt一、模型评估 1. 准确率(Accuracy):这是最基本的评估指标之一,表示模型在测试集上正确 分类样本的比例。对于分类任务而言,准确率是衡量模型性能的直观标准。 2. 损失函数值(Loss)&#xff1…

一、模型评估 

1. 准确率(Accuracy):这是最基本的评估指标之一,表示模型在测试集上正确 分类样本的比例。对于分类任务而言,准确率是衡量模型性能的直观标准。

2. 损失函数值(Loss):观察模型在测试集上的损失函数值,可以帮助了解模型的 泛化能力。低损失值表明模型在未见过的数据上的表现较好。

3. 精确度(Precision):精确度是指所有被模型预测为正类的样本中实际为正类 的比例。它关注的是预测为正类的准确性。

4. 召回率(Recall):召回率是指所有实际为正类的样本中被模型正确识别为正类 的比例。它反映了模型识别出所有正类的能力。

5. F1分数(F1 Score):F1分数是精确度和召回率的调和平均值,适用于需要同时 考虑精确度和召回率的情况,特别是在类别分布不均衡时更为有用。

6. 混淆矩阵(Confusion Matrix):这是一个表格,展示了分类模型预测结果与 真实标签之间的比较,可以从中计算出精确度、召回率等指标。

7. ROC曲线和AUC值(Receiver Operating Characteristic Curve and Area Under the Curve):ROC曲线通过描绘不同阈值下的真正率(True Positive Rate, TPR)与假正率(False Positive Rate, FPR),来评估二分类模型的性能。 AUC(曲线下面积)是ROC曲线下的面积,其值范围从0到1,AUC值越接近1, 表示模型的分类性能越好。

8. Top-k精度:在多分类任务中,有时会考虑模型预测的前k个最可能类别中是否包 含正确答案,这种情况下会用到Top-k精度作为评估指标。

二、准确率(Accuracy)

        这是最基本的评估指标之一,表示模型在测试集上正确分类样本的比例。对于分类任 务而言,准确率是衡量模型性能的直观标准。

特点:

  • 直观但受类别不平衡影响大

三、损失函数值(Loss)

        模型预测结果与真实标签的差异量化值

四、精确度(Precision)

        预测为正类的样本中实际为正类的比例

五、召回率(Recall)

        实际为正类的样本中被正确预测的比例

六、F1分数(F1 Score)

        F1 分数是精确度(Precision)和召回率(Recall)的调和平均数,它综合考虑了模 型的预测精度和覆盖率。

七、混淆矩阵(Confusion Matrix)

        是一个表格,展示了分类模型预测结果与真实标签之间的比较,可以从中计算出精 确度、召回率等指标。

预测类别1预测类别2
真实类别1TPFN
真实类别2FPTN

八、ROC曲线和AUC值

        ROC曲线通过描绘不同阈值下的真正率(True Positive Rate, TPR)与假正率(False Positive Rate, FPR),来评估二分类模型的性能。AUC(曲线下面积)是ROC曲线 下的面积,其值范围从0到1,AUC值越接近1,表示模型的分类性能越好。

8.1、ROC曲线

        以假正率(FPR)为横轴,真正率(TPR)为纵轴的曲线

8.2、AUC值

        ROC曲线下的面积

九、Top-k精度

        模型预测概率前k高的类别中包含真实标签的比例

指标优点局限性适用场景
准确率直观易理解类别不平衡时失效平衡数据集
F1分数平衡精确度与召回率仅关注单一类别(二分类)不均衡数据、二分类任务
AUC不受阈值影响仅适用于二分类类别不平衡的二分类任务
Top-k精度容错性强计算复杂度高细粒度分类任务
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score, top_k_accuracy_score# 真实标签与预测结果
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]
y_proba = [[0.7, 0.2, 0.1],[0.1, 0.3, 0.6],[0.3, 0.4, 0.3],[0.8, 0.1, 0.1],[0.6, 0.2, 0.2],[0.2, 0.5, 0.3]]# 计算各项指标
print("准确率:", accuracy_score(y_true, y_pred))
print("精确度(宏平均):", precision_score(y_true, y_pred, average='macro'))
print("召回率(宏平均):", recall_score(y_true, y_pred, average='macro'))
print("F1分数(宏平均):", f1_score(y_true, y_pred, average='macro'))
print("混淆矩阵:\n", confusion_matrix(y_true, y_pred))
print("Top-2精度:", top_k_accuracy_score(y_true, y_proba, k=2))# 二分类场景下的AUC计算示例
y_true_binary = [0, 1, 1, 0]
y_proba_binary = [0.1, 0.9, 0.8, 0.3]
print("AUC值:", roc_auc_score(y_true_binary, y_proba_binary))
http://www.dtcms.com/wzjs/99856.html

相关文章:

  • 上海比较大的外贸公司有哪些东莞seo搜索
  • 自己做的网站怎么赚钱微信怎么推广引流客户
  • 餐饮加盟网站建设方案品牌整合营销传播
  • 自己做的php网站进行伪静态网络营销的八种方式
  • 政府网站建设考察报告聊城seo
  • 做网站设计的公司排名佛山seo外包平台
  • 网络空间安全专业seo入门培训班
  • 营销型网站规划步骤百度竞价点击价格公式
  • 使用ecs做淘客网站推广方案怎么做
  • 武汉软件培训机构优化设计答案四年级上册语文
  • 旅游网站开发背景论文优化推广联盟
  • 国家重大项目建设库网站广告推销
  • 网站后台代码如何做汕头seo外包机构
  • 放心的网站建设代理合肥seo培训
  • 网站建设维护app怎么推广
  • 陕西交通建设网站链接交换公司
  • 可以做网络攻防的实验的网站友情链接如何交换
  • 合肥百度 网站建设推广产品的方法和步骤
  • 长沙网站开发方案青岛官网seo公司
  • 重庆专业网站搭建公司seo排名系统
  • 做运营那些无版权图片网站百度公司官网
  • 攀枝花网站推广百度导航下载2022最新版
  • 营销型网站建设易网拓搜索引擎优化的根本目的
  • 自己做的网站怎么在百度可以查到湛江今日头条新闻
  • 广东省住房及建设厅官方网站千锋教育学费
  • 济南h5网站建设旅游营销推广方案
  • 沈阳seo哪家公司东莞网站seo公司哪家大
  • 站长工具查询视频网络营销是什么专业类别
  • 做行业分析的网站公司企业网站制作
  • 济宁建设局网站首页北京谷歌优化