当前位置: 首页 > wzjs >正文

周至县做网站营销推广是什么意思

周至县做网站,营销推广是什么意思,西安网站开开发,黄金网站下载免费目录 1. 向状态添加键2. 更新工具中的状态3. 构建状态图4. 提示聊天机器人5. 添加人工协助6. 手动更新状态参考 1. 向状态添加键 通过向状态添加name和birthday键来更新聊天机器人对实体生日的研究: from typing import Annotated from typing_extensions import T…

目录

  • 1. 向状态添加键
  • 2. 更新工具中的状态
  • 3. 构建状态图
  • 4. 提示聊天机器人
  • 5. 添加人工协助
  • 6. 手动更新状态
  • 参考

1. 向状态添加键

  通过向状态添加name和birthday键来更新聊天机器人对实体生日的研究:

from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph.message import add_messagesclass State(TypedDict):messages: Annotated[list, add_messages]name: strbirthday: str

  将这些信息添加到状态中,可以使其被其他图节点以及图的持久层轻松访问。

2. 更新工具中的状态

  在human_assistance工具中填充状态键。这允许人类在信息存储到状态中之前进行审查。使用Command从工具内部发出状态更新。

from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool
from langgraph.types import Command, interrupt@tool
# Note that because we are generating a ToolMessage for a state update, we
# generally require the ID of the corresponding tool call. We can use
# LangChain's InjectedToolCallId to signal that this argument should not
# be revealed to the model in the tool's schema.
def human_assistance(name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:"""Request assistance from a human"""human_response = interrupt({"question": "Is this correct?","name": name,"birthday": birthday})# If the information is correct, update the state as-is.if human_response.get("correct", "").lower().startswith("y"):verified_name = nameverified_birthday = birthdayresponse = "Correct"# Otherwise, receive information from the human reviewerelse:verified_name = human_response.get("name", name)verified_birthday = human_response.get("birthday", birthday)response = f"Made a correction: {human_response}"# This time we explicitly update the state with a ToolMessage inside# the tool.state_update = {"name": verified_name,"birthday": verified_birthday,"messages": [ToolMessage(response, tool_call_id=tool_call_id)]}# We return a Command object in the tool to update our state.return Command(update=state_update)

3. 构建状态图

  构建状态图:

from langchain_tavily import TavilySearch
from langchain.chat_models import init_chat_modelfrom langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode, tools_conditionfrom langgraph.types import Command, interruptllm = init_chat_model("deepseek:deepseek-chat"
)graph_builder = StateGraph(State)tool = TavilySearch(max_results=2)
tools = [tool, human_assistance]
llm_with_tools = llm.bind_tools(tools)def chatbot(state: State):message = llm_with_tools.invoke(state["messages"])# Because we will be interrupting during tool execution,# we disable parallel tool calling to avoid repeating any# tool invocations when we resume.assert len(message.tool_calls) <= 1return {"messages": [message]}graph_builder.add_node("chatbot", chatbot)tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)graph_builder.add_conditional_edges("chatbot",tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")memory = MemorySaver()graph = graph_builder.compile(checkpointer=memory)

4. 提示聊天机器人

  提示聊天机器人查找LangGraph库的生日,并在获取所需信息后指示聊天机器人使用human_assistance工具。通过在工具的参数中设置name和birthday,你强制聊天机器人为这些字段生成建议。

user_input = ("Can you look up when LangGraph was released? ""When you have the answer, use the human_assistance tool for review."
)config = { "configurable": { "thread_id": "1"} }events = graph.stream({ "messages": [ { "role": "user", "content": user_input } ] },config,stream_mode="values"
)for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果:

================================ Human Message =================================Can you look up when LangGraph was released? When you have the answer, use the human_assistance tool for review.
================================== Ai Message ==================================
Tool Calls:tavily_search (call_0_d8e088fb-fd82-42e5-9c75-fcab225d7678)Call ID: call_0_d8e088fb-fd82-42e5-9c75-fcab225d7678Args:query: LangGraph release datesearch_depth: advanced
================================= Tool Message =================================
Name: tavily_search{"query": "LangGraph release date", "follow_up_questions": null, "answer": null, "images": [], "results": [{"url": "https://pypi.org/project/langgraph/", "title": "langgraph - PyPI", "content": "LangGraph is inspired by Pregel and Apache Beam. The public interface draws inspiration from NetworkX. LangGraph is built by LangChain Inc, the creators of LangChain, but can be used without LangChain.\n\nProject details\n\nVerified details\n\nMaintainers\n\nUnverified details\n\nProject links\n\nMeta\n\nClassifiers\n\nRelease history\n\nRelease notifications |\n              RSS feed\n\n0.4.3\n\nMay 8, 2025\n\n0.4.2\n\nMay 7, 2025\n\n0.4.1\n\nApr 30, 2025\n\n0.4.0\n\nApr 29, 2025\n\n0.3.34\n\nApr 24, 2025\n\n0.3.33\n\nApr 23, 2025 [...] langgraph 0.4.3\n\npip install langgraph\n\n\nCopy PIP instructions\n\nReleased: \n  May 8, 2025\n\nBuilding stateful, multi-actor applications with LLMs\n\nNavigation\n\nVerified details\n\nMaintainers\n\nUnverified details\n\nProject links\n\nMeta\n\nClassifiers\n\nProject description\n\n\n\n[!NOTE]\nLooking for the JS version? See the JS repo and the JS docs. [...] 0.2.14\n\nAug 24, 2024\n\n0.2.13\n\nAug 23, 2024\n\n0.2.12\n\nAug 22, 2024\n\n0.2.11\n\nAug 22, 2024\n\n0.2.10\n\nAug 21, 2024\n\n0.2.9\n\nAug 21, 2024\n\n0.2.8\n\nAug 21, 2024\n\n0.2.7\n\nAug 21, 2024\n\n0.2.7a0\n                  \npre-release\n\nAug 21, 2024\n\n0.2.6\n\nAug 21, 2024\n\n0.2.5\n\nAug 21, 2024\n\n0.2.5a0\n                  \npre-release\n\nAug 20, 2024\n\n0.2.4\n\nAug 15, 2024\n\n0.2.3\n\nAug 8, 2024\n\n0.2.2\n\nAug 7, 2024\n\n0.2.1\n\nAug 7, 2024\n\n0.2.0\n\nAug 7, 2024\n\n0.1.19\n\nAug 1, 2024\n\n0.1.18\n                  \nyanked\n\nJul 31, 2024", "score": 0.8033131, "raw_content": null}, {"url": "https://github.com/langchain-ai/langgraph/releases", "title": "Releases · langchain-ai/langgraph - GitHub", "content": "Source code(zip) 2025-05-09T20:14:45Z \nSource code(tar.gz) 2025-05-09T20:14:45Z [...] Source code(zip) 2025-05-02T05:42:07Z \nSource code(tar.gz) 2025-05-02T05:42:07Z [...] Assets 2\n\nSource code(zip) 2025-05-15T15:20:59Z \nSource code(tar.gz) 2025-05-15T15:20:59Z", "score": 0.78194773, "raw_content": null}], "response_time": 1.39}
================================== Ai Message ==================================
Tool Calls:human_assistance (call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91d)Call ID: call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91dArgs:name: LangGraph Release Date Reviewbirthday: 2023-01-01

  再在human_assistance工具中遇到了interrupt。

5. 添加人工协助

  聊天机器人未能识别正确的日期,因此向它提供信息:

human_command = Command(resume={"name": "LangGraph","birthday": "Jan 17, 2024"}
)events = graph.stream(human_command, config, stream_mode="values")
for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果为:

================================== Ai Message ==================================
Tool Calls:human_assistance (call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91d)Call ID: call_0_2a2e50aa-70ea-4892-9d89-e22d942ce91dArgs:name: LangGraph Release Date Reviewbirthday: 2023-01-01
================================= Tool Message =================================
Name: human_assistanceMade a correction: {'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}
================================== Ai Message ==================================The release date of LangGraph appears to be around January 17, 2024, based on the review. Let me know if you'd like further details or confirmation!

  现在,这些字段反映在状态中:

snapshot = graph.get_state(config){k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}

  运行结果为:

{'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}

6. 手动更新状态

  LangGraph对应用程序状态提供了高度的控制。例如,在任何时刻(包括中断时),你都可以使用graph.update_state手动覆盖一个键:

graph.update_state(config, {"name", "LangGraph (library)"})

  运行结果为:

{'configurable': {'thread_id': '1','checkpoint_ns': '','checkpoint_id': '1f0363ee-7b8e-674c-8006-33b41fa5d353'}}

  再通过graph.get_state查看状态中的值:

snapshot = graph.get_state(config){k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}

  运行结果为:

{'name': 'LangGraph (library)', 'birthday': 'Jan 17, 2024'}

参考

https://langchain-ai.github.io/langgraph/tutorials/get-started/5-customize-state/

http://www.dtcms.com/wzjs/98562.html

相关文章:

  • 回收网站建设手机游戏性能优化软件
  • 章丘做网站哪家强百度seo推广方案
  • 国家企业信息查询平台官网seo教程论坛
  • WordPress建站 网盘视频seo流量软件
  • 网站开发的历史怎么做游戏推广员
  • 怎么给我 的网站做关键词应用关键词优化
  • 网站建设公司的发展规划网站关键词优化排名软件
  • 从网络安全角度考量_写出建设一个大型电影网站规划方案百度数据库
  • 网络文化经营许可证价格谷歌官方seo入门指南
  • 盐城哪家做网站的正规郑州网络公司排名
  • 家纺网站建设成都十大营销策划公司
  • 无锡建设主管部门网站汕头seo外包公司
  • 自己做电影网站怎么赚钱南宁优化网站网络服务
  • 网站内的新闻怎样做链接厦门人才网唯一官方网站
  • gae wordpress百度seo怎么样优化
  • wordpress主题知更鸟lts网站seo快速排名优化
  • 网站建设与运营意义营销型网站建站
  • 一站式做网站成都网站建设方案托管
  • 排名网站建设怎么给产品做网络推广
  • 美国生物等效性如果做的网站新手网络推广怎么干
  • 西宁做网站哪家公司好最新疫情最新消息
  • 军人运动会官方网站建设目标网络营销管理名词解释
  • 深圳房产信息网搜索引擎的关键词优化
  • 企业网站建设定制网站建设公司seo技术学院
  • 郑州大学动态网站开发考试答案搜索引擎营销的步骤
  • asp网站怎么搭建网站开发培训
  • 深圳品牌网站快速排名优化系统
  • 做电脑系统的网站口碑营销策略
  • 手机移动开发网站建设品牌seo培训
  • 网站小图标怎么做的网站seo优化网站