当前位置: 首页 > wzjs >正文

一个做日语翻译的网站网页搜索优化

一个做日语翻译的网站,网页搜索优化,仓库管理软件免费,中国十大广告公司0、原图 一、优化地方 计算行的时候,采用概率分布去统计差值概率比较大的即为所要的值。 def find_common_difference(array):"""判断数组中每个元素的差值是否相等,并返回该差值:param array: 二维数组,其中每个元素是一个…

0、原图

一、优化地方

计算行的时候,采用概率分布去统计差值概率比较大的即为所要的值。

def find_common_difference(array):"""判断数组中每个元素的差值是否相等,并返回该差值:param array: 二维数组,其中每个元素是一个包含两个整数的列表:return: 如果所有差值相等,返回该差值;否则,返回 None"""# 计算每对相邻元素的差值differences = [abs(pair[1] - pair[0]) for pair in array]# 统计差值的出现频率frequency = Counter(differences)# 检查所有差值是否相等# if all(difference == differences[0] for difference in differences):#     return differences[0]# else:#     return Nonemost_common_difference = frequency.most_common(1)[0][0]return most_common_difference

二、完整代码

import cv2
from paddleocr import PaddleOCR
from docx import Document
from docx.shared import Pt, Inches
from docx.oxml.ns import qn
from docx.oxml import OxmlElement
from collections import Counter# 初始化 PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang="ch")  # 使用中文语言模型def recognize_text(image_path):"""使用 PaddleOCR 进行文字识别:param image_path: 图像路径:return: 识别结果"""image = cv2.imread(image_path)result = ocr.ocr(image, cls=True)return resultdef extract_table_data(results):"""从识别结果中提取表格数据:param results: 识别结果:return: 表格数据"""table_data = []for line in results:row_data = []for element in line:text = element[1][0]  # 识别的文本row_data.append(text)table_data.append(row_data)return table_datadef set_cell_borders(cell, border_color="000000", row_height=None):"""设置单元格的边框颜色:param cell: 单元格对象:param border_color: 边框颜色,默认为黑色"""tc = cell._elementtcPr = tc.get_or_add_tcPr()tcBorders = OxmlElement("w:tcBorders")for border_name in ("top", "left", "bottom", "right"):border = OxmlElement(f"w:{border_name}")border.set(qn("w:val"), "single")border.set(qn("w:sz"), "4")  # 边框大小border.set(qn("w:space"), "0")border.set(qn("w:color"), border_color)tcBorders.append(border)tcPr.append(tcBorders)# 设置内容居中显示for paragraph in cell.paragraphs:for run in paragraph.runs:run.font.size = paragraph.style.font.size  # 保持字体大小一致paragraph.alignment = 1  # 1 表示居中对齐# 设置行高if row_height is not None:tr = cell._element.getparent()  # 获取行元素trPr = tr.get_or_add_trPr()trHeight = OxmlElement("w:trHeight")trHeight.set(qn("w:val"), str(row_height))trPr.append(trHeight)def create_table_and_fill_data(data, output_file):"""在 Word 文档中插入表格并填充数据:param data: 表格数据:param output_file: 输出文件路径"""# 创建一个新的 Word 文档doc = Document()# 添加一个标题sssdoc.add_heading("测试XX信息表", level=1)# 创建表格table = doc.add_table(rows=len(data), cols=len(data[0]))# 填充表格数据for row_index, row_data in enumerate(data):for col_index, cell_text in enumerate(row_data):cell = table.cell(row_index, col_index)cell.text = str(cell_text)set_cell_borders(cell, border_color="FF0000", row_height=300)# 设置表格边框颜色# 保存 Word 文档doc.save(output_file)# 转换为二维数组
def convert_to_2d(data, num_columns):"""将一维数组转换为二维数组:param data: 一维数组:param num_columns: 每行的列数:return: 二维数组"""# 提取表头headers = data[:num_columns]# 提取数据部分rows = data[num_columns:]# 按列数分组table_data = [headers]for i in range(0, len(rows), num_columns):table_data.append(rows[i : i + num_columns])return table_datadef find_intervals(data, threshold=2):"""计算数组中相邻数据的差值大于 threshold 的索引间的间隔:param data: 数组:param threshold: 差值阈值:return: 索引间隔列表"""intervals = []prev_index = 0  # 前一个索引for i in range(1, len(data)):if abs(data[i] - data[i - 1]) > threshold:# intervals.append(i - prev_index)intervals.append([prev_index, i - 1])prev_index = ielse:continuereturn intervalsdef find_common_difference(array):"""判断数组中每个元素的差值是否相等,并返回该差值:param array: 二维数组,其中每个元素是一个包含两个整数的列表:return: 如果所有差值相等,返回该差值;否则,返回 None"""# 计算每对相邻元素的差值differences = [abs(pair[1] - pair[0]) for pair in array]# 统计差值的出现频率frequency = Counter(differences)# 检查所有差值是否相等# if all(difference == differences[0] for difference in differences):#     return differences[0]# else:#     return Nonemost_common_difference = frequency.most_common(1)[0][0]return most_common_differencedef extract_column_count(results):"""每个元素的中心点X坐标计算从识别结果中提取表格的列数:param results: 识别结果:return: 表格的列数"""cols = []for line in results:for element in line:box = element[0]  # 文本框坐标text = element[1][0]  # 识别的文本confidence = element[1][1]  # 置信度# 提取文本框的坐标信息x_coords = [point[0] for point in box]# 计算文本框的中心点center_x = sum(x_coords) / len(x_coords)# 将中心点添加到列的列表中cols.append(center_x)# 去重并排序# print("去重前:", cols)cols = sorted(cols)# print("排序重后:", cols)return colsdef main(image_path, output_file):size = 5# 识别图像中的文字results = recognize_text(image_path)x_cols = extract_column_count(results)intervals = find_intervals(x_cols, size)rows = find_common_difference(intervals)num_columns = len(x_cols) / (rows + 1)# 提取表格数据table_data = extract_table_data(results)table_data_val = convert_to_2d(table_data[0], int(num_columns))# 在 Word 文档中创建表格并填充数据create_table_and_fill_data(table_data_val, output_file)# 示例:识别图片中的 Excel 表格并保存到 Word 文档
image_path = "order.jpg"  # 替换为你的 Excel 图片路径
output_file = "order.docx"  # 输出的 Word 文件路径
main(image_path, output_file)

三、识别后的效果

 

 

http://www.dtcms.com/wzjs/95556.html

相关文章:

  • 订阅号做微网站爱链接外链购买
  • thinkcmf 做企业网站网站推广的常用方法
  • 哪些网站可以做淘宝客semir
  • 邢台做网站服务商网络营销策略的演变
  • 网站开发公司不干了互联网营销师在哪里报名
  • dreamweaver做购物网站推广渠道平台
  • 网站宣传搭建谷歌查询关键词的工具叫什么
  • 安康网站建设制作seo优化博客
  • 酒店 深圳 网站建设微信引流推广怎么找平台
  • 云网站建设的意义泰安短视频seo
  • 代理注册公司代理记账seo关键词库
  • 住房和城乡建设网站方案网站推广优化价格
  • 服务器租用价格表杭州专业seo公司
  • flex做的网站百度上怎么打广告宣传
  • 哈尔滨信息工程学院地址合肥品牌seo
  • 临朐网站建设定制首选哪家公司免费的api接口网站
  • 广东网站建设联系电话搜索关键词网站
  • 南京网站建设苏icp备网络营销试卷
  • 做书法网站的目的网页设计与网站开发
  • 北京网站制作培训搜索引擎大全全搜网
  • 做家装的网站好外贸推广引流
  • 福田蒙派克价格及图片seo诊断分析
  • 阜阳公司网站建设seo标题关键词怎么写
  • 西安网站建设排名google搜索中文入口
  • 网站审查备案有哪些网页设计公司
  • 企业宣传片制作公司收费seo 资料包怎么获得
  • 深圳市宝安区石岩街道债务优化是什么意思
  • 网站基础模块建设外贸seo公司
  • 上海网站开发建设百度关键词首页排名怎么上
  • 张店网站建设哪家好建站之星网站