当前位置: 首页 > wzjs >正文

武汉建委官网首页seo公司后付费

武汉建委官网首页,seo公司后付费,网页制作超链接代码,延安网站制作0 环境准备 ollama已部署嵌入模型quentinz/bge-large-zh-v1.5:latest已安装miniconda环境具备科学上网条件(docker安装milvus时需要) 1 milvus安装 1.1 启动Docker Desktop windows环境下,docker拉取镜像需要先启动Docker Desktop。否则…

0 环境准备

  • ollama已部署嵌入模型quentinz/bge-large-zh-v1.5:latest
  • 已安装miniconda环境
  • 具备科学上网条件(docker安装milvus时需要)

1 milvus安装

1.1 启动Docker Desktop

windows环境下,docker拉取镜像需要先启动Docker  Desktop。否则拉取镜像时会报错,无法拉取镜像。

1.2 下载milvus的docker-compose.yml

在powershell输入以下命令

Invoke-WebRequest https://github.com/milvus-io/milvus/releases/download/v2.4.15/milvus-standalone-docker-compose.yml -OutFile docker-compose.yml

1.3 启动milvus

docker compose up -d

2 开发环境准备

2.1 创建python环境

        通过conda命令创建python环境,保持买个项目的python环境独立,防止项目之间包冲突,方便管理项目依赖。

conda create -n LangchainDemo python=3.10

2.2 pycharm创建项目

  1. 解释器类型:选择自定义环境
  2. 环境:选择现有
  3. 类型:选择conda
  4. 环境:选择上一步创建的环境

2.3 激活python环境

 conda activate LangchainDemo

2.4 安装项目依赖包

        安装项目必要的依赖,包含fastapi、milvus、pdfplumber、ollama等。pdfpy解析可能存在乱码,选用pdfplumber效果更佳。

pip install fastapi uvicorn pymilvus python-multipart pdfplumber ollama

3 程序实现

3.1 导入依赖包

import os
import uuid
import asyncio
import pdfplumber
from fastapi import FastAPI, UploadFile, File
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType
from pymilvus.orm import utility
from tenacity import retry, stop_after_attempt
import ollama

3.2 定义FastAPI

app = FastAPI()

3.3 定义文本切割逻辑

        使用pdfplumber打开pdf文件,按自然段落分割文本,设置默认500字符一个分块,且有100个字符重叠。


def extract_text_with_pdfnumber(pdf_path):"""使用pdfplumber提取PDF文本(保留段落结构)[2]()[5]()"""with pdfplumber.open(pdf_path) as pdf:text = []for page in pdf.pages:# 按自然段落分割文本paragraphs = page.extract_text()text.append(paragraphs.replace('\n', ''))return '\n\n'.join(text)def chunk_with_overlap(text, chunk_size=500, overlap=100):"""带重叠的分块策略[1]()"""chunks = []words = text.split()start_idx = 0while start_idx < len(words):end_idx = start_idx + chunk_sizechunk = ' '.join(words[start_idx:end_idx])chunks.append(chunk)start_idx = end_idx - overlap  #  设置重叠部分# 处理末尾不足的情况if end_idx < len(words):breakreturn chunks

3.4 构建嵌入模型

        连接ollama部署的嵌入模型,bge-large-zh对中文字符处理较好。设置调用嵌入模型失败时可重试3次。


@retry(stop=stop_after_attempt(3))
async def generate_embeddings(text):"""使用Ollama生成文本嵌入"""loop = asyncio.get_event_loop()return await loop.run_in_executor(None,lambda: ollama.Client(host='http://localhost:11434').embeddings(model="quentinz/bge-large-zh-v1.5:latest", prompt=text)['embedding']

3.5 连接milvus

connections.connect("default", host="localhost", port="19530")
collection_name = "pdf_documents"

3.6 构建milvus collection

        定义pdf文本存储的collection的schema,对应数据库的表和字段。

if not utility.has_collection(collection_name):# 创建集合fields = [FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=64),FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=20000),FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024),FieldSchema(name="source", dtype=DataType.VARCHAR, max_length=256)]schema = CollectionSchema(fields=fields, description="pdf_documents")collection = Collection(name=collection_name, schema=schema)# 创建索引index_params = {"index_type": "IVF_FLAT","metric_type": "L2","params": {"nlist": 128}}collection.create_index("vector", index_params)
else:collection = Collection(collection_name)

注意:bge-large-zh只能支持到1024维度,500字符对应content的大于需要20000的长度。如果前面修改了嵌入模型或者分块大小,此处也需要调整。

3.7 定义http上传pdf文件处理流程

@app.post("/upload_pdf")
async def upload_pdf(file: UploadFile = File(...),chunk_size=500,overlap=100):print(f"开始上传文件《{file.filename}》")"""上传PDF文件"""try:#  临时保存文件temp_path = f"temp_{uuid.uuid4()}.pdf"with open(temp_path, "wb") as f:# 流式写入文件while chunk := await file.read(1024):f.write(chunk)# 解析PDFtext = extract_text_with_pdfnumber(temp_path)os.remove(temp_path)# 分块处理chunks = chunk_with_overlap(text, chunk_size, overlap)# 批量生成嵌入embeddings = []for chunk in chunks:embeddings.append(await generate_embeddings(chunk))# 构建插入数据entities = [{"id": str(uuid.uuid4()),"content": chunk,"vector": emb,"source": file.filename} for chunk, emb in zip(chunks, embeddings)]batch_size = 100for i in range(0, len(entities), batch_size):insert_result = collection.insert(entities[i:i+batch_size])collection.flush()return {"status": "success", "chunks_processed": len(chunks)}except Exception as e:return {"error": str(e)}, 500

3.8 实现查询milvus逻辑

@app.get("/search")
async def semantic_search(query: str, top_k=5):query_embedding = await generate_embeddings(query)search_params = {"metric_type": "L2", "params": {"nprobe": 10}}# 加载集合到内存中collection.load()results = collection.search(data=[query_embedding],anns_field="vector",param=search_params,limit=top_k,output_fields=["content", "source"])return [{"score": hit.score, "metadata": hit.entity.to_dict()} for hit in results[0]]

3.9 启动http服务

if __name__ == "__main__":import uvicornuvicorn.run(app, host="0.0.0.0", port=8321)

4 测试

        建议使用apifox请求http接口。

4.1 测试上传PDF文件解析入库

        用post请求,在body标签页选择form-data填写file参数,参数类型选择file,然后上传文件。上传成功后返回success。

4.2 查询milvus测试

        用get请求,在param中填写query字段,并填写需要查询的内容,如下图:

附录一:完整代码示例

import os
import uuid
import asyncio
import pdfplumber
from fastapi import FastAPI, UploadFile, File
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType
from pymilvus.orm import utility
from tenacity import retry, stop_after_attempt
import ollamaapp = FastAPI()def extract_text_with_pdfnumber(pdf_path):"""使用pdfplumber提取PDF文本(保留段落结构)[2]()[5]()"""with pdfplumber.open(pdf_path) as pdf:text = []for page in pdf.pages:# 按自然段落分割文本paragraphs = page.extract_text()text.append(paragraphs.replace('\n', ''))return '\n\n'.join(text)def chunk_with_overlap(text, chunk_size=500, overlap=100):"""带重叠的分块策略[1]()"""chunks = []words = text.split()start_idx = 0while start_idx < len(words):end_idx = start_idx + chunk_sizechunk = ' '.join(words[start_idx:end_idx])chunks.append(chunk)start_idx = end_idx - overlap  #  设置重叠部分# 处理末尾不足的情况if end_idx < len(words):breakreturn chunks@retry(stop=stop_after_attempt(3))
async def generate_embeddings(text):"""使用Ollama生成文本嵌入"""loop = asyncio.get_event_loop()return await loop.run_in_executor(None,lambda: ollama.Client(host='http://localhost:11434').embeddings(model="quentinz/bge-large-zh-v1.5:latest", prompt=text)['embedding'])connections.connect("default", host="localhost", port="19530")
collection_name = "pdf_documents"# 检查集合是否存在,如果存在则删除
# if utility.has_collection(collection_name):
#     collection = Collection(collection_name)
#     collection.drop()if not utility.has_collection(collection_name):# 创建集合fields = [FieldSchema(name="id", dtype=DataType.VARCHAR, is_primary=True, max_length=64),FieldSchema(name="content", dtype=DataType.VARCHAR, max_length=20000),FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=1024),FieldSchema(name="source", dtype=DataType.VARCHAR, max_length=256)]schema = CollectionSchema(fields=fields, description="pdf_documents")collection = Collection(name=collection_name, schema=schema)# 创建索引index_params = {"index_type": "IVF_FLAT","metric_type": "L2","params": {"nlist": 128}}collection.create_index("vector", index_params)
else:collection = Collection(collection_name)@app.post("/upload_pdf")
async def upload_pdf(file: UploadFile = File(...),chunk_size=500,overlap=100):print(f"开始上传文件《{file.filename}》")"""上传PDF文件"""try:#  临时保存文件temp_path = f"temp_{uuid.uuid4()}.pdf"with open(temp_path, "wb") as f:# 流式写入文件while chunk := await file.read(1024):f.write(chunk)# 解析PDFtext = extract_text_with_pdfnumber(temp_path)os.remove(temp_path)# 分块处理chunks = chunk_with_overlap(text, chunk_size, overlap)# 批量生成嵌入embeddings = []for chunk in chunks:embeddings.append(await generate_embeddings(chunk))# 构建插入数据entities = [{"id": str(uuid.uuid4()),"content": chunk,"vector": emb,"source": file.filename} for chunk, emb in zip(chunks, embeddings)]batch_size = 100for i in range(0, len(entities), batch_size):insert_result = collection.insert(entities[i:i+batch_size])collection.flush()return {"status": "success", "chunks_processed": len(chunks)}except Exception as e:return {"error": str(e)}, 500@app.get("/search")
async def semantic_search(query: str, top_k=5):query_embedding = await generate_embeddings(query)search_params = {"metric_type": "L2", "params": {"nprobe": 10}}# 加载集合到内存中collection.load()results = collection.search(data=[query_embedding],anns_field="vector",param=search_params,limit=top_k,output_fields=["content", "source"])return [{"score": hit.score, "metadata": hit.entity.to_dict()} for hit in results[0]]if __name__ == "__main__":import uvicornuvicorn.run(app, host="0.0.0.0", port=8321)

附录二:错误处理

        apifox请求http接口填写接口地址时,如果代码路径search或者upload_pdf后面有"/"斜杠则在apifox请求时也要加"/"斜杠,否则会报错307 Temporary Redirect,Expected boundary character 45, got 8 at index 2,如下:

此时错误的请求,url最后没有斜杠"/"

此时正确的请求url应该最后有斜杠"/",如下:

http://www.dtcms.com/wzjs/87907.html

相关文章:

  • 温州网站建设首选国鼎网络seo公司排名
  • 京东网站建设框架图盐城seo营销
  • 登陆建设银行网站异常seo关键词优化推广价格
  • 如何制作自己的个人网站什么是交换链接
  • wordpress 4.4 漏洞安徽seo优化
  • 商店设计效果图北京排名seo
  • mac可以做网站开发吗成都正规搜索引擎优化
  • 长春网络推广网站打开速度优化
  • 网站建设案例咨询搜索引擎营销的名词解释
  • 网站备案要收费吗win7系统优化工具
  • 城市轨道建设规范下载网站百度关键词优化大
  • 织梦57网站的友情链接怎么做河南今日头条新闻
  • 班级网站建设模板下载北京seo关键词排名优化
  • 网站快速排名工具网站seo优化方案
  • 武汉网站开发有限公司百度互联网营销顾问
  • 无限站点建站系统重庆seo排名收费
  • 客户管理系统免费灰色seo关键词排名
  • 网站建设 大公司今天合肥刚刚发生的重大新闻
  • 江油网站制作中国seo排行榜
  • 域名怎样连接到网站图片外链工具
  • 网站宣传册怎么做今日舆情热点
  • 网站加外链找客户资源的软件
  • 邹城市建设局网站深圳seo培训
  • 做个公司网站要多少钱深圳网站设计公司哪家好
  • 深圳网站制作培训百度竞价怎么操作
  • 网站建站那个好网站推广在线
  • 做爰全过程免费的视频网站白云区新闻
  • asp.net企业网站框架怎么优化网站关键词的方法
  • 怎样自己做企业的网站优化绿松石什么意思
  • 怎么创造网站成都关键词seo推广平台