当前位置: 首页 > wzjs >正文

疫情实时地图百度seo推广软件

疫情实时地图,百度seo推广软件,农业信息免费发布平台,网站在线客服咨询🔥 Google机器学习实践指南(TensorFlow六大优化器) Google机器学习实战(12)-20分钟掌握TensorFlow优化器 一、优化器核心作用 ▲ 训练本质: 迭代求解使损失函数最小化的模型参数,关键要素: 特征工程&…

🔥 Google机器学习实践指南(TensorFlow六大优化器)

Google机器学习实战(12)-20分钟掌握TensorFlow优化器


一、优化器核心作用

▲ 训练本质:
迭代求解使损失函数最小化的模型参数,关键要素:

  • 特征工程(Feature)
  • 优化算法(Optimizer)

本文主要对其中的优化算法进行说明,关于特征工程,欢迎查看前一篇:Google机器学习实战(11)-特征工程六大方法深度解析与应用


二、优化器类型详解

1. SGD随机梯度下降

**说明:**SGD全名 stochastic gradient descent, 即随机梯度下降,但在TensorFlow中SDG是指MBGD(minibatch gradient descent),即最小梯度下降。

**参数:**学习速率 ϵ, 初始参数 θ
实际实现:MBGD(小批量梯度下降)
在这里插入图片描述
▲ 图1 SGD参数更新过程

my_optimizer = tf.optimizers.SGD(learning_rate = 0.0000001, clipnorm=5.0)

特点

  • 训练速度快
  • 自带正则化效果

2. Momentum

**说明:**momentum即动量,在更新的时候一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。从而在一定程度上增加稳定性,使得学习地更快,并且还有一定摆脱局部最优的能力。

**参数:**学习速率 ϵ, 初始参数 θ, 初始速率v, 动量衰减参数α
在这里插入图片描述
在这里插入图片描述
▲ 图2 普通SGD与Momentum法对比
优势

  • 加速同向梯度学习
  • 抑制方向震荡

3. Nesterov Momentum

**说明:**Nesterov Momentum(牛顿动量法)是momentum方法的一项改进,与Momentum唯一区别是计算梯度的不同,Nesterov momentum先用当前的速度v更新一遍参数,再用更新的临时参数计算梯度。

**参数:**学习速率 ϵ, 初始参数 θ, 初始速率v, 动量衰减参数α
在这里插入图片描述
▲ 图3 Nesterov Momentum前瞻性更新

改进点

  • 先按当前速度更新参数
  • 在临时参数点计算梯度

4. AdaGrad

说明:AdaGrad(自适应梯度算法)是一种自适应学习率的梯度下降优化算法。它通过累积参数梯度的历史信息来为每个参数自适应地调整学习率。

参数: 全局学习速率 ϵ, 初始参数 θ, 数值稳定量δ

优点:

  • 能够实现学习率的自动更改

缺陷

  • 深度网络易提前终止

5. RMSProp

说明: RMSProp通过引入一个衰减系数,让r每回合都衰减一定比例,类是对AdaGrad算法的改进。

参数: 全局学习速率 ϵ, 初始参数 θ, 数值稳定量δ,衰减速率ρ
在这里插入图片描述

▲ 图4 学习率自适应过程

改进

  • 引入衰减系数ρ
  • 解决AdaGrad过早收敛问题

6. Adam

**说明:**Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。

**参数:**步进值 ϵ, 初始参数 θ, 数值稳定量δ,一阶动量衰减系数ρ1, 二阶动量衰减系数ρ2 (经验值:δ=10^−8,ρ1=0.9,ρ2=0.999)。

算法流程

  1. 计算一阶/二阶动量
  2. 偏差校正
  3. 参数更新

参数建议

  • ρ1=0.9
  • ρ2=0.999
  • δ=10^-8

三、优化器性能对比

优化器收敛速度内存消耗超参数敏感性
SGD⭐⭐
Momentum⭐⭐⭐
Nesterov Momentum⭐⭐⭐⭐
AdaGrad⭐⭐
RMSProp⭐⭐⭐
Adam⭐⭐⭐⭐

四、工程实践建议

选择策略

  • 简单任务:SGD+Momentum
  • 稀疏数据:AdaGrad
  • 默认首选:Adam

调参技巧

lr_schedule = tf.optimizers.schedules.PolynomialDecay(initial_learning_rate=0.01,decay_steps=10000,end_learning_rate=0.001
)

# 技术问答 #

Q:Adam优化器为什么需要偏差校正?
A:解决初始阶段动量估计偏向0的问题,确保训练初期稳定性

Q:如何选择优化器?
A:从Adam开始尝试,对性能敏感场景可比较SGD+Momentum


附录:学习资源

TensorFlow优化器文档:https://www.tensorflow.org/api_docs/python/tf/optimizers
优化算法可视化:https://ruder.io/optimizing-gradient-descent/

参考文献:
[1]《深度学习优化算法综述》
[2] TensorFlow官方优化器指南

http://www.dtcms.com/wzjs/83897.html

相关文章:

  • 网页网站设计公司seo网站关键词
  • 货到付款网站怎么做营销培训心得体会
  • 新乡专业做网站公司seo外包公司如何优化
  • php网站识别手机百度快速排名点击器
  • 网站搭建软件工具优化百度搜索
  • 王烨轩seo顾问是干什么
  • 动态网站建设实训收获日本粉色iphone
  • 网站规划的一般步骤百度搜索指数排行
  • 注册功能网站建设百度网盘官网入口
  • 购物网站html模板下载百度客服电话24小时人工服务热线
  • 北京市朝阳区社会保障住房建设网站搜索引擎优化的特点
  • 分辨率大于1920的网站怎么做自助搭建平台
  • web设计模板seo排名快速刷
  • 空间站做网站有什么深圳百度关键词
  • iis日志 网站攻击百度提交入口网址在哪
  • 爱途 中山网站制作做网站推广一般多少钱
  • 店铺装修设计网站百度山西授权代理
  • 南京做网站引流的公司建站合肥网络公司seo
  • 朋友做的网站图片不显示不出来的微信运营
  • 网站上海网站建设网页生成器
  • 旅游最新利好消息相城seo网站优化软件
  • 做电梯销售从哪些网站获取信息湖南网络优化服务
  • 网站的布局方式有哪些网络营销战略有什么用
  • 关于动态网站开发的论文给公司做网站要多少钱
  • 手机有些网站打不开怎么解决网站流量数据分析
  • 黄冈建设网站长沙seo顾问
  • 像做网站平台取什么名字好广州网站推广
  • 建立企业网站价格重庆森林经典台词独白
  • asp access网站建设源代码八大营销模式有哪几种
  • 网站开发 书籍网站推荐