当前位置: 首页 > wzjs >正文

cms网站开发流程设计网站的关键点

cms网站开发流程,设计网站的关键点,网站代运营收费,中国空间站即将建成一、怎么进行一个自然语言to SQL评估? 1.DB——准备可用的数据表 2.准备问题集,自然语言|正确的预期SQL 3.大模型执行完成的SQL 4.Table.json——一个存储表格数据或者数据库表结构信息的 JSON 文件。当前是存储的表结构信息的,存储数据库…

一、怎么进行一个自然语言to SQL评估?

1.DB——准备可用的数据表

2.准备问题集,自然语言|正确的预期SQL

3.模型执行完成的SQL

4.Table.json——一个存储表格数据或者数据库表结构信息的 JSON 文件。当前是存储的表结构信息的,存储数据库表的元数据,例如表名、列名、列类型、主键、外键等信息。


二、获取Spider数据集,以及评估代码

https://yale-lily.github.io/spider 

个人理解:如有错误请指出

baselines\ :包含不同基线模型的代码和文档。
- nl2code\ :可能是一个将自然语言转换为代码的基线模型目录。
- seq2seq_attention_copy\ :包含序列到序列注意力复制模型的代码和脚本。
- sqlnet\ :包含 Modified SQLNet 基线模型的代码和文档。
- typesql\ :包含 Modified TypeSQL 基线模型的代码和文档。
evaluation_examples\ :包含评估示例文件。
preprocess\ :包含数据预处理的脚本和文档。
evaluation.py :用于评估模型的 Python 脚本。
process_sql.py :用于处理 SQL 查询的 Python 脚本。


三、以上调试成功后,执行命令结果

python evaluation.py --gold [gold file] --pred [predicted file] --etype [evaluation type] --db [database dir] --table [table file]arguments:[gold file]        gold.sql file where each line is `a gold SQL \t db_id`[predicted file]   predicted sql file where each line is a predicted SQL[evaluation type]  "match" for exact set matching score, "exec" for execution score, and "all" for both[database dir]     directory which contains sub-directories where each SQLite3 database is stored[table file]       table.json file which includes foreign key info of each database

[gold file] 提供了正确的 SQL 答案和对应的数据库标识,而 [predicted file] 包含了模型生成的 SQL 预测结果,二者共同用于模型评估。

[evaluation type]:这是对不同评估方式的分类。

  • -match(精确集合匹配得分):当使用 “match” 评估类型时,主要关注的是被评估对象与给定集合在元素上的精确匹配程度。例如在文本处理中,判断一段文本中的词汇集合是否与标准词汇集合完全一致,根据匹配的程度来计算得分。
  • -exec(执行得分):“exec” 评估类型侧重于对某个操作、程序或任务执行结果的评估。比如在代码执行场景下,根据代码执行是否成功、执行结果是否符合预期等方面来计算得分。
  • -all(两者兼具):选择 “all” 意味着同时考虑精确集合匹配得分和执行得分,综合这两个方面来对对象进行评估。
[table file] 指的是 一个名为 table.json 的文件,该文件包含了每个数据库的外键信息。

四、结果分析

各难度样本数量

count 行展示不同难度级别样本数量,easy250 个,medium440 个,hard174 个,extra170 个,总计 1034 个。评估指标

exact match(完全匹配准确率)

衡量预测 SQL 与标准 SQL 完全一致的比例。各难度级别分别为easy0.852medium0.720hard0.718extra0.388 ,整体为 0.697 。数值越高,完全匹配情况越好,extra难度下表现较差,说明复杂场景完全匹配难。

partial matching(部分匹配相关指标 )

  • 准确率(Accuracy):判断预测 SQL 中特定子句(如select where等 )正确的比例。如select子句在easy难度准确率 0.996 hard难度 1.000 ,反映不同难度下子句预测正确性。
  • 召回率(Recall):关注标准 SQL 中特定子句被正确预测出的比例。如where子句在medium难度召回率 0.854 ,体现对标准子句的捕捉能力。
  • F1 值(F1):综合准确率和召回率的指标。如group(no Having)子句在all难度下 F1 0.996 ,越高说明子句预测综合表现越好。
http://www.dtcms.com/wzjs/834594.html

相关文章:

  • 做网站设计需要学什么百度小程序开发平台
  • 找人做网站被骗怎么办腾讯风铃怎么做网站
  • 便民的网站app怎么做免费建立个人网站的视频
  • 帮别人做网站犯法吗搜索关键词是什么意思
  • 在网站上可以做哪些互动活动春节网页设计素材网站
  • 佛山网站推广怎么做江苏省建筑人才网
  • 临汾推广型网站建设百度推广关键词多少合适
  • 做网站心得地下城钓鱼网站怎么做
  • 南京医院网站建设制作表白网站
  • 如何做美食的视频网站上海网站制作技术
  • 北京网站设计制作关键词优化网络推广品牌营销公司
  • 网站排名优化要多少钱手机虚拟空间
  • 网站的基本建设投资建筑模板有哪些
  • 老区建设网站wordpress 投稿 图片大小
  • 公司招人去哪个网站网站域名正在维护中
  • 香河县做网站网页设计素材加工
  • 如何制作网站视频的软件义乌网络优化
  • 赤峰网站建设 公司thinkphp 微网站开发
  • 电商网站建设教程wordpress连接已重置
  • 当前网站开发用什么软件淮南做网站的
  • 餐饮网站系统加强会计师事务所品牌建设
  • 个性化的个人网站简易the7做的网站
  • 网站建设首选wordpress 邀请码
  • wordpress 获取标签绵阳seo
  • 建设银行光明支行网站wordpress 添加地图
  • 网站基本建设投资内容小众做的好的网站
  • 网站建设企业建站哪家好购物网站建设存在的问题
  • 如何做超市的网站响应式网站代码规范
  • 南京网站建设公司有哪些wordpress插件cloud
  • 百度网站广告怎么做网页设计模板网站免费下载