当前位置: 首页 > wzjs >正文

最近新闻有哪些360平台怎么做网站优化

最近新闻有哪些,360平台怎么做网站优化,长春优化所,北京装修公司电话名单以下是希尔排序的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格: 一、希尔排序基础实现 原理 希尔排序是插入排序的改进版本,通过分步缩小增量间隔,将数组分成多个子序列进行插入排序&#…

以下是希尔排序的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格:
在这里插入图片描述


一、希尔排序基础实现

原理

希尔排序是插入排序的改进版本,通过分步缩小增量间隔,将数组分成多个子序列进行插入排序,逐步减少元素移动次数。

代码示例
public class ShellSort {void sort(int[] arr) {int n = arr.length;// 初始增量(希尔原始增量:n/2,每次除以2)for (int gap = n / 2; gap > 0; gap /= 2) {// 对每个子序列进行插入排序for (int i = gap; i < n; i++) {int temp = arr[i];int j;// 插入排序,步长为gapfor (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}}
}
复杂度分析
  • 时间复杂度
    • 平均:O(n^(3/2))(希尔原始增量)。
    • 最坏:O(n²)(依赖增量序列)。
    • 最好:O(n log n)
  • 空间复杂度O(1)
  • 稳定性:不稳定(相同值的元素可能因交换顺序改变相对位置)。

二、常见变体及代码示例

1. Hibbard增量序列

改进点:增量序列选择 2^k - 1(如1、3、7、15…),减少子序列间的相关性。
适用场景:平均性能优于原始希尔增量。

public class HibbardShellSort {void sort(int[] arr) {int n = arr.length;// 生成Hibbard增量序列int gap = 1;while (gap < n / 2) {gap = 2 * gap + 1;}while (gap >= 1) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}gap = (gap - 1) / 2; // 逆序应用增量}}
}
2. Sedgewick增量序列

改进点:增量序列按特定公式生成(如1, 5, 19, 41, 109…),优化时间复杂度。
适用场景:理论时间复杂度更低(接近 O(n^(4/3)))。

public class SedgewickShellSort {void sort(int[] arr) {int n = arr.length;// 生成Sedgewick增量序列List<Integer> gaps = new ArrayList<>();for (int h = 1; h < n; ) {gaps.add(h);if (h <= n / 3) h = 3 * h + 1;else h = 3 * (h / 2) + 1;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}
3. 斐波那契增量序列

改进点:增量序列基于斐波那契数列(如1、1、2、3、5…),减少子序列相关性。
适用场景:理论上的优化尝试。

public class FibonacciShellSort {void sort(int[] arr) {int n = arr.length;// 生成斐波那契增量序列List<Integer> gaps = new ArrayList<>();int a = 0, b = 1;while (b < n) {gaps.add(b);int temp = a + b;a = b;b = temp;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}

三、变体对比表格

变体名称增量序列时间复杂度空间复杂度稳定性主要特点适用场景
基础希尔排序(原始增量)n/2, n/4, ..., 1O(n^(3/2))(平均)
O(n²)(最坏)
O(1)不稳定简单易实现,但性能依赖增量选择通用场景,增量选择简单
Hibbard增量序列2^k -1(如1,3,7,15…)O(n^(3/2))(平均)O(1)不稳定减少子序列相关性,性能更优需要平衡性能与实现复杂度的场景
Sedgewick增量序列1,5,19,41,…O(n^(4/3))(理论最优)O(1)不稳定理论时间复杂度最低,适合大数据需要极致性能的场景
斐波那契增量序列斐波那契数列(如1,2,3…)O(n^(3/2))(平均)O(1)不稳定理论上的优化尝试,实际效果需验证研究或特定实验场景

四、关键选择原则

  1. 基础场景:优先使用基础希尔排序(原始增量),因其简单且性能足够。
  2. 性能优化
    • Hibbard增量:适合需要比原始增量更好的平均性能,且实现复杂度较低。
    • Sedgewick增量:适用于大数据场景,理论时间复杂度最低。
  3. 增量序列选择
    • 理论最优:Sedgewick增量。
    • 实现简单:Hibbard增量。
  4. 稳定性需求:所有变体均不稳定,若需稳定排序需选择其他算法(如归并排序)。
  5. 实验场景:斐波那契增量可用于探索不同增量序列的效果,但实际应用较少。

通过选择合适的增量序列,可在特定场景下显著提升希尔排序的效率。例如,Sedgewick增量在理论上的时间复杂度最低,适合大数据排序;而Hibbard增量则在实现复杂度与性能之间取得平衡。

http://www.dtcms.com/wzjs/827808.html

相关文章:

  • 开源网站开发文档下载成都感染人数最新消息
  • 宁阳网站建设价格不能访问子目录的网站
  • 鹤壁专业做网站多少钱flash源文件网站
  • wordpress 评论框 提示石家庄seo扣费
  • 网站如何查看浏览量宁波网站建设yiso
  • 男生为女生做网站做网站赠送
  • 建设银行网站登录不进去wordpress 去谷歌
  • 怎么制作网站接口wordpress大图模板
  • 沧州好的做网站的公司施工企业安全生产评价表下载
  • 南宁网站 制作网站图解图片是用什么软件做的
  • 在小型网站建设小组中的基本oa系统全称
  • 成都网站设计公司五莲县城乡建设局网站首页
  • 芷江建设局的工作人员网站电商网站毕业设计论文
  • 建网站需要什么东西connect wordpress 主题
  • 建设工程施工证哪个网站查询恶意 镜像网站
  • 新手建什么网站赚钱企业咨询管理公司是干什么的
  • 服装公司 网站怎么做网站模板 整站源码下载
  • 电龙网站建设上海有名的设计工作室
  • 网站关键词选取的步骤大学生职业生涯规划ppt
  • 岫岩网站建设北京海大网智网站建设制作公司
  • 腾讯云怎么建设网站希音跨境平台入驻条件
  • 免费制作主图的网站长沙装修公司排名
  • 公司网站建设工作韩国唯美网站设计
  • 开网店需要自己做网站吗杭州做公司网站
  • 深圳专业建网站公司wordpress适合优化吗
  • 网站建设与管期末试题线上推广活动方案
  • 软文范例大全100字新手如何学seo
  • 网站后台管理系统php赛雷猴是什么意思
  • 网站分页样式哪些网站可以做代理商
  • 万维网包括哪些网站wordpress 字体不好看