当前位置: 首页 > wzjs >正文

设计师接私单做网站做网站要哪些人员

设计师接私单做网站,做网站要哪些人员,网站建设的步骤有哪些,漯河哪里做网站DAY 31 文件的规范拆分和写法 今日的示例代码包含2个部分 notebook文件夹内的ipynb文件,介绍下今天的思路项目文件夹中其他部分:拆分后的信贷项目 知识点回顾 规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解 作业:尝试…
DAY 31 文件的规范拆分和写法

今日示例代码包含2部分

  1. notebook文件夹内的ipynb文件介绍今天思路
  2. 项目文件夹其他部分拆分后的信贷项目

知识点回顾

  1. 规范的文件命名
  2. 规范的文件夹管理
  3. 机器学习项目的拆分
  4. 编码格式和类型注解

作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。

preprocessing.py

import pandas as pd 
import seaborn as sns
import numpy as np
from typing import Tuple, Dict
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier  # 随机森林分类器
from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score  # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix  # 用于生成分类报告和混淆矩阵
import warnings  # 用于忽略警告信息
import osdef load_data(file_path: str) -> pd.DataFrame:"""加载数据文件Args:file_path: 数据文件路径Returns:加载的数据框"""return pd.read_csv(file_path)def encode_categorical_features(data: pd.DataFrame) -> Tuple[pd.DataFrame, Dict]:"""对分类特征进行编码Args:data: 原始数据框Returns:编码后的数据框和编码映射字典"""discrete_features = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'thal']continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']data_encoded = data.copy()# Purpose 独热编码data_encoded = pd.get_dummies(data, columns=discrete_features)return data_encodeddef normalization(data: pd.DataFrame) -> Tuple[pd.DataFrame, Dict]:"""对连续特征进行归一化Args:data: 连续数据框Returns:归一化后的数据"""continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']data_scaled = data.copy()min_max_scaler = MinMaxScaler()data_scaled[continuous_features] = min_max_scaler.fit_transform(data_scaled[continuous_features])return data_scaledif __name__ == "__main__":# 测试代码file_path = r"C:\Users\zwj\Desktop\python\Python60DaysChallenge-main\1\text\day31\data\raw\heart.csv"if not os.path.exists(file_path):print(f"文件不存在,请检查路径:{file_path}")else:data = load_data(file_path)data_encoded = encode_categorical_features(data)data_clean = normalization(data_encoded)print("数据预处理完成!")

train.py

# -*- coding: utf-8 -*-import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import time
import joblib # 用于保存模型
from typing import Tuple # 用于类型注解from data.preprocessing import load_data, encode_categorical_features, normalizationdef prepare_data() -> Tuple:"""准备训练数据Returns:训练集和测试集的特征和标签"""# 加载和预处理数据data = load_data(r"C:\Users\zwj\Desktop\python\Python60DaysChallenge-main\1\text\day31\data\raw\heart.csv")data_encoded = encode_categorical_features(data)data_scaled = normalization(data_encoded)# 分离特征和标签X = data_scaled.drop(['target'], axis=1)y = data_scaled['target']# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)return X_train, X_test, y_train, y_testdef train_model(X_train, y_train, model_params=None) -> RandomForestClassifier:"""训练随机森林模型Args:X_train: 训练特征y_train: 训练标签model_params: 模型参数字典Returns:训练好的模型"""if model_params is None:model_params = {'random_state': 42}model = RandomForestClassifier(**model_params)model.fit(X_train, y_train)return modeldef evaluate_model(model, X_test, y_test) -> None:"""评估模型性能Args:model: 训练好的模型X_test: 测试特征y_test: 测试标签"""y_pred = model.predict(X_test)print("\n分类报告:")print(classification_report(y_test, y_pred))print("\n混淆矩阵:")print(confusion_matrix(y_test, y_pred))def save_model(model, model_path: str) -> None:"""保存模型Args:model: 训练好的模型model_path: 模型保存路径"""os.makedirs(os.path.dirname(model_path), exist_ok=True)joblib.dump(model, model_path)print(f"\n模型已保存至: {model_path}")if __name__ == "__main__":# 准备数据X_train, X_test, y_train, y_test = prepare_data()# 记录开始时间start_time = time.time()# 训练模型model = train_model(X_train, y_train)# 记录结束时间end_time = time.time()print(f"\n训练耗时: {end_time - start_time:.4f} 秒")# 评估模型evaluate_model(model, X_test, y_test)# 保存模型save_model(model, "models/random_forest_model.joblib") 

plots.py

import matplotlib.pyplot as plt
import seaborn as sns
import shap
import numpy as np
from typing import Any
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import time
import joblib # 用于保存模型
from typing import Tuple # 用于类型注解
from data.preprocessing import load_data, encode_categorical_features, normalization
def plot_feature_importance_shap(model: Any, X_test, save_path: str = None) -> None:"""绘制SHAP特征重要性图Args:model: 训练好的模型X_test: 测试数据save_path: 图片保存路径"""# 初始化SHAP解释器explainer = shap.TreeExplainer(model)shap_values = explainer.shap_values(X_test)# 绘制特征重要性条形图plt.figure(figsize=(12, 8))shap.summary_plot(shap_values[:, :, 0], X_test, plot_type="bar", show=False)plt.title("SHAP特征重要性")if save_path:plt.savefig(save_path)print(f"特征重要性图已保存至: {save_path}")plt.show()def plot_confusion_matrix(y_true, y_pred, save_path: str = None) -> None:"""绘制混淆矩阵热力图Args:y_true: 真实标签y_pred: 预测标签save_path: 图片保存路径"""plt.figure(figsize=(8, 6))cm = confusion_matrix(y_true, y_pred)sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')plt.title('混淆矩阵')plt.ylabel('真实标签')plt.xlabel('预测标签')if save_path:plt.savefig(save_path)print(f"混淆矩阵图已保存至: {save_path}")plt.show()def set_plot_style():"""设置绘图样式"""#plt.style.use('seaborn')sns.set()  # 使用 seaborn 的样式plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falseif __name__ == "__main__":# 设置绘图样式set_plot_style()# 准备数据和模型from sklearn.datasets import load_irisfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.model_selection import train_test_splitdata = load_data(r"C:\Users\zwj\Desktop\python\Python60DaysChallenge-main\1\text\day31\data\raw\heart.csv")data_encoded = encode_categorical_features(data)data_scaled = normalization(data_encoded)# 分离特征和标签X = data_scaled.drop(['target'], axis=1)y = data_scaled['target']# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练模型model = RandomForestClassifier(random_state=42)model.fit(X_train, y_train)plot_feature_importance_shap(model, X_test)# 这里可以添加测试代码print("可视化模块加载成功!") 

@浙大疏锦行

http://www.dtcms.com/wzjs/816718.html

相关文章:

  • 网站制作最新技术的青岛网络推广教程
  • asp 网站后台站酷app
  • 用mvc做网站报告做英文网站 是每个单词首字母大写 还是每段落首字母大写
  • 深圳网站建设哪些wordpress改logo不显示
  • 网站制作网站设计如何制作公司内部网页
  • 建设网站公司怎么收费最近一周新闻摘抄
  • 网站建设国内外研究现况做网站如何调字体格式
  • 房产网站建设芜湖做网站设计的公司
  • 佛山h5网站公司上海房产网最新二手房
  • 个人网站 建设企业网站建设费怎么账务处理
  • 挂马网站 名单怎么做淘宝企业网站
  • 武进区住房和城乡建设局网站免费的个人网站怎么做
  • 怎么做网站首页关键词wordpress 数据库锁死
  • 网站开发哪种语言比较好网站主体负责人邮箱
  • 河池网站推广珠海建网站的网络公司
  • 网站建设费的分录怎么写app备案号查询平台官网
  • 网站模板 知乎杭州建网站的公司
  • 网站建设的违约责任上海名企
  • 360搜索的网站收录入口石家庄自己怎么做网站啊
  • 宠物店网站模板wordpress主题添加产品
  • 外包做网站平台 一分钟做网店好还是自己建网站好
  • 网站设计 素材北京网站建设多少钱
  • 企业网站怎么查公司logo背景墙实景图
  • 广州企业网站建设报价linux建站和wordpress建站
  • 免费发广告网站网站建设哪家好首选万维科技
  • 做网站为什么要建站点使用下载的整站asp源代码建设自己的私人网站需要注意哪些
  • 做图网站地图模板建站难吗
  • 网站建设代理商电话广告免费设计在线生成
  • 山东旗舰建设集团网站百度减少大量网站收录
  • 旅游网站建设的目标是什么wordpress页脚间距代码