当前位置: 首页 > wzjs >正文

网站数据库安全人流什么时间做 新闻源网站

网站数据库安全,人流什么时间做 新闻源网站,免费发布推广信息的网站,品牌建设的作用目录 DAY 42 Grad-CAM与Hook函数1.回调函数2.lambda函数3.hook函数的模块钩子和张量钩子4.Grad-CAM的示例作业:理解下今天的代码即可 DAY 42 Grad-CAM与Hook函数 1.回调函数 def handle_result(result):print(f计算结果是: {result})def calculate(a, b, callback…

目录

      • DAY 42 Grad-CAM与Hook函数
        • 1.回调函数
        • 2.lambda函数
        • 3.hook函数的模块钩子和张量钩子
        • 4.Grad-CAM的示例
        • 作业:理解下今天的代码即可

DAY 42 Grad-CAM与Hook函数

1.回调函数
def handle_result(result):print(f'计算结果是: {result}')def calculate(a, b, callback):result = a + bcallback(result)calculate(3, 5, handle_result)
计算结果是: 8
def handle_result(result):print(f'计算结果是: {result}')def with_callback(callback):def decorator(func):def wrapper(a, b):result = func(a, b)callback(result)return resultreturn wrapperreturn decorator@with_callback(handle_result)
def calculate(a, b):return a + bcalculate(3, 5)
计算结果是: 88
2.lambda函数
square = lambda x: x ** 2print(square(5))
25
3.hook函数的模块钩子和张量钩子
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plttorch.manual_seed(42)
np.random.seed(42)
import torch
import torch.nn as nnclass SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()self.conv = nn.Conv2d(1, 2, kernel_size=3, padding=1)self.relu = nn.ReLU()self.fc = nn.Linear(2 * 4 * 4, 10)def forward(self, x):x = self.conv(x)x = self.relu(x)x = x.view(-1, 2 * 4 * 4)x = self.fc(x)return xmodel = SimpleModel()
conv_outputs = []def forward_hook(module, input, output):print(f'钩子被调用!模块类型: {type(module)}')print(f'输入形状: {input[0].shape}')print(f'输出形状: {output.shape}')conv_outputs.append(output.detach())hook_handle = model.conv.register_forward_hook(forward_hook)
x = torch.randn(1, 1, 4, 4)
output = model(x)
hook_handle.remove()
钩子被调用!模块类型: <class 'torch.nn.modules.conv.Conv2d'>
输入形状: torch.Size([1, 1, 4, 4])
输出形状: torch.Size([1, 2, 4, 4])
import warnings
import matplotlib.pyplot as pltwarnings.filterwarnings('ignore')
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falseif conv_outputs:plt.figure(figsize=(10, 5))plt.subplot(1, 3, 1)plt.title('输入图像')plt.imshow(x[0, 0].detach().numpy(), cmap='gray')plt.subplot(1, 3, 2)plt.title('卷积核1输出')plt.imshow(conv_outputs[0][0, 0].detach().numpy(), cmap='gray')plt.subplot(1, 3, 3)plt.title('卷积核2输出')plt.imshow(conv_outputs[0][0, 1].detach().numpy(), cmap='gray')plt.tight_layout()plt.show()

在这里插入图片描述

conv_gradients = []def backward_hook(module, grad_input, grad_output):print(f'反向钩子被调用!模块类型: {type(module)}')print(f'输入梯度数量: {len(grad_input)}')print(f'输出梯度数量: {len(grad_output)}')conv_gradients.append((grad_input, grad_output))hook_handle = model.conv.register_backward_hook(backward_hook)
x = torch.randn(1, 1, 4, 4, requires_grad=True)
output = model(x)
loss = output.sum()
loss.backward()
hook_handle.remove()
反向钩子被调用!模块类型: <class 'torch.nn.modules.conv.Conv2d'>
输入梯度数量: 3
输出梯度数量: 1
x = torch.tensor([2.0], requires_grad=True)
y = x ** 2
z = y ** 3def tensor_hook(grad):print(f'原始梯度: {grad}')return grad / 2hook_handle = y.register_hook(tensor_hook)
z.backward()
print(f'x的梯度: {x.grad}')
hook_handle.remove()
原始梯度: tensor([48.])
x的梯度: tensor([96.])
4.Grad-CAM的示例
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from PIL import Imagetorch.manual_seed(42)
np.random.seed(42)transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform
)classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(128 * 4 * 4, 512)self.fc2 = nn.Linear(512, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = self.pool(F.relu(self.conv3(x)))x = x.view(-1, 128 * 4 * 4)x = F.relu(self.fc1(x))x = self.fc2(x)return xmodel = SimpleCNN()
print('模型已创建')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = model.to(device)def train_model(model, epochs=1):trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,shuffle=True, num_workers=2)criterion = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=0.001)for epoch in range(epochs):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'[{epoch + 1}, {i + 1}] 损失: {running_loss / 100:.3f}')running_loss = 0.0print('训练完成')try:model.load_state_dict(torch.load('cifar10_cnn.pth'))print('已加载预训练模型')
except:print('无法加载预训练模型, 使用未训练模型或训练新模型')train_model(model, epochs=1)torch.save(model.state_dict(), 'cifar10_cnn.pth')model.eval()class GradCAM:def __init__(self, model, target_layer):self.model = modelself.target_layer = target_layerself.gradients = Noneself.activations = Noneself.register_hooks()def register_hooks(self):def forward_hook(module, input, output):self.activations = output.detach()def backward_hook(module, grad_input, grad_output):self.gradients = grad_output[0].detach()self.target_layer.register_forward_hook(forward_hook)self.target_layer.register_backward_hook(backward_hook)def generate_cam(self, input_image, target_class=None):model_output = self.model(input_image)if target_class is None:target_class = torch.argmax(model_output, dim=1).item()self.model.zero_grad()one_hot = torch.zeros_like(model_output)one_hot[0, target_class] = 1model_output.backward(gradient=one_hot)gradients = self.gradientsactivations = self.activationsweights = torch.mean(gradients, dim=(2, 3), keepdim=True)cam = torch.sum(weights * activations, dim=1, keepdim=True)cam = F.relu(cam)cam = F.interpolate(cam, size=(32, 32), mode='bilinear', align_corners=False)cam = cam - cam.min()cam = cam / cam.max() if cam.max() > 0 else camreturn cam.cpu().squeeze().numpy(), target_class
Files already downloaded and verified
模型已创建
已加载预训练模型
import warnings
import matplotlib.pyplot as pltwarnings.filterwarnings('ignore')
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falseidx = 102
image, label = testset[idx]
print(f'选择的图像类别: {classes[label]}')def tensor_to_np(tensor):img = tensor.cpu().numpy().transpose(1, 2, 0)mean = np.array([0.5, 0.5, 0.5])std = np.array([0.5, 0.5, 0.5])img = std * img + meanimg = np.clip(img, 0, 1)return imginput_tensor = image.unsqueeze(0).to(device)
grad_cam = GradCAM(model, model.conv3)
heatmap, pred_class = grad_cam.generate_cam(input_tensor)plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f'原始图像: {classes[label]}')
plt.axis('off')plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f'Grad-CAM热力图: {classes[pred_class]}')
plt.axis('off')plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title('叠加热力图')
plt.axis('off')plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()
选择的图像类别: 青蛙

在这里插入图片描述

作业:理解下今天的代码即可

@浙大疏锦行

http://www.dtcms.com/wzjs/813933.html

相关文章:

  • 行业网站运营计划佛山网站优化效果
  • 信阳网站建设找汉狮品牌网站建设企业
  • 网站系统怎么建设wordpress下载管理插件下载
  • wordpress耗资源升级程序seo网站建设是什么
  • 访问网站的原理dz整站网站建设
  • 网站seo关键词优化排名网站建设的项目计划
  • 制作网站品牌公司简介网站开发和软件
  • 公司网站打开显示建设中网站排名网站优化
  • 做网站编程搜索引擎排名机制
  • 做网站排名的公司北京室内设计公司
  • 威宁网站建设蜘蛛云建站网站
  • 网站建设管理情况自查报告用dw做简单图片网站
  • 莆田网站建设维护总部基地网站建设公司
  • 区域网站查询wordpress 分类页面打开400
  • 忆唐网不做网站做品牌中国关键词官网
  • 铜川做网站php网站说明
  • 域名连接到网站吗如何建立公司网站?
  • 武安网站制作网站建设顺利交付
  • 创业型企业网站模板wordpress转载微博
  • 公司网站建设策划书尚品宅配网站建设
  • 网站免费大全一般做哪些外贸网站
  • 太原做网站深圳模板开发建站
  • 响应式网站做多大的尺寸搜索指数
  • 网站建设找客户渠道城市建设规划网站
  • 公司网站建设需要咨询什么问题专门做鞋的网站
  • 获取网站后台地址建模培训班
  • 做网站的没有进项票怎么办网页颜色搭配案例
  • 响应式电影网站传统网站 手机网站
  • 在哪个网站订酒店做申根签证湘潭市建设网站
  • 山西省建设部网站上海人才服务网官网入口