当前位置: 首页 > wzjs >正文

重庆网站建设公司 菠拿拿wordpress 首页文章

重庆网站建设公司 菠拿拿,wordpress 首页文章,宿迁市区建设局网站,佛山市做网站的公司题目: 定义阶乘 n!123⋅⋅⋅n。 请问 100!(100的阶乘)有多少个正约数。 们需要计算 100! 的正约数的个数。阶乘 100! 的定义是: 100!123⋯100 直接计算 100!的值是不现实的,因为它是一个非常大的数。因此&#xf…

题目:

定义阶乘 n!=1×2×3×⋅⋅⋅×n。

请问 100!(100的阶乘)有多少个正约数。

们需要计算 100! 的正约数的个数。阶乘 100! 的定义是:

100!=1×2×3×⋯×100

直接计算 100!的值是不现实的,因为它是一个非常大的数。因此,我们需要找到一种间接的方法来计算其正约数的个数。


为什么选择质因数分解?

1. 正约数的性质
  • 一个数的正约数的个数与其质因数分解密切相关。

  • 如果一个数的质因数分解为:

    那么它的正约数的个数为:

  • 因此,计算正约数的个数可以转化为计算质因数的指数。

2. 阶乘的质因数分解
  • 阶乘 n!的质因数分解可以通过对 1 到 n 的每个数进行质因数分解,然后统计每个质数的总指数。

  • 例如,10! 的质因数分解为:

    其正约数的个数为:

3. 方法的可行性
  • 质因数分解是数论中的经典问题,有成熟的算法(如试除法、筛法等)可以高效实现。

  • 对于 n=100,质因数分解的计算量是可以接受的。

解题代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=105;
int a[N]; // 数组 a 用于存储每个质数的指数// 质因数分解函数
void f(int n)
{for(int i=2;i<=n/i;i++) // 从 2 开始枚举可能的质因数{if(n%i)continue; // 如果 i 不是 n 的因数,跳过while(n%i==0)n/=i,a[i]++; // 统计质因数 i 的指数}if(n>1)a[n]++; // 如果 n 是质数,直接统计
}int main()
{int n=100; // 计算 100! 的正约数个数for(int i=1;i<=n;i++)f(i); // 对 1 到 100 的每个数进行质因数分解ll ans=1; // 初始化答案为 1for(int i=1;i<=n;i++){ans=ans*(a[i]+1); // 计算正约数的个数}cout<<ans<<'\n'; // 输出结果return 0;
}

为什么正约数个数是 (e1+1)×(e2+1)×⋯×(ek+1)相乘而不是相加?

1. 质因数分解与约数的关系
  • 假设一个数 n 的质因数分解为:

  • 其中 p1,p2,…,pk是质数,e1,e2,…,ek是它们的指数。

2. 约数的形式
  • 任何一个约数 d 都可以表示为:

3. 约数的个数
  • 对于每个质因数 pi,指数 ai有 ei+1种选择(从 0 到 ei)。

  • 因此,总的约数个数是每个质因数的选择数的乘积:

4. 为什么是相乘而不是相加?
  • 如果我们将每个质因数的选择数相加,得到的是所有可能的指数的总和,而不是约数的个数。

  • 相乘是因为每个质因数的选择是独立的,我们需要考虑所有可能的组合。


示例

假设 n=12,其质因数分解为:

根据公式,正约数的个数为:

实际上,12 的正约数为:1, 2, 3, 4, 6, 12,共 6 个。


代码逻辑回顾(计算 10!的正约数个数)

  1. 数组 a[N]:用于存储每个质数的指数。

  2. 函数 f(n):对整数 n 进行质因数分解,并更新数组 a

  3. 主函数

    • 对 1 到 10 的每个数调用 f(n),更新数组 a

    • 根据数组 a 计算正约数的个数,公式为:

      ans=(a[2]+1)×(a[3]+1)×⋯×(a[7]+1)

初始化

  • 数组 a[N] 初始化为全 0。

  • 变量 ans 初始化为 1。


逐步调用 f(n) 并更新数组 a

1. 调用 f(1)

2. 调用 f(2)

3. 调用 f(3)

4. 调用 f(4)

5. 调用 f(5)

6. 调用 f(6)

7. 调用 f(7)

8. 调用 f(8)

9. 调用 f(9)

10. 调用 f(10)


计算正约数的个数

根据数组 a 的最终状态:

a=[0,0,8,4,0,2,0,1,0,0,0]

其中:

  • a[2]=8(质数 2 的指数)

  • a[3]=4(质数 3 的指数)

  • a[5]=2(质数 5 的指数)

  • a[7]=1(质数 7 的指数)

根据正约数公式:

ans=(a[2]+1)×(a[3]+1)×(a[5]+1)×(a[7]+1)

代入数值:

ans=(8+1)×(4+1)×(2+1)×(1+1)

计算:

ans=9×5×3×2=270


最终结果

10! 的正约数的个数为 270

http://www.dtcms.com/wzjs/812371.html

相关文章:

  • 北太平庄网站建设销售网站建设推广
  • 某公司网站策划建设建盏厂家联系电话
  • 郑州动力无限网站建设最新的国际新闻事件
  • 桐乡网站设计贵阳学网站建设
  • 网站开发 印花税wordpress ico图标
  • 深圳做网站哪家专业找工作的网站平台
  • 顺德公益网站制作优设网页设计官网
  • 自己网站给别人网站做外链有影响吗凡科登录网
  • 网站推广中h1标签的重要性网页设计入门问题和解决办法
  • 网站前端代码有哪些问题大学营销型网站建设实训课程
  • 个人做什么网站注册公司需要多久的时间
  • 手机网站推广服务鹿泉外贸网站建设
  • 广州高端优秀网站改版设计公司本科毕业 做网站编辑
  • 盐城网站建设首选梦搏网络网站建设招标样本
  • 怎么做好网站建设建设银行信用卡网站会员注册
  • 小伙做网站网站开发支付宝
  • 外贸自助建站哪个好深圳网站建设yihe kj
  • 怎么关闭网站安全检测珠海汽车网站建设
  • 开发一套网站多少钱男性医院排名一览表
  • 广州网站 制作信科便宜网站开发毕业设计收获与体会
  • 上海网站制作公司北京城乡住房建设官方网站
  • 南京设计网站的公司怎样做网站开发
  • 简述制作网站的步骤和过程手机网站制作天强科技
  • 网站建设资源平台新发地网站建设
  • 硅谷电视剧他们做的是网站还是软件网站建设中的推广工作
  • 网站建设的市场调研做视频播放网站 赚钱
  • 石家庄网站制作网站建设公司官方网站首页
  • 做区块链网站的公司福州建设公司名单
  • 给网络公司起名字大全seo百度站长工具查询
  • wordpress网站克隆app内测分发平台