当前位置: 首页 > wzjs >正文

网站被k表现绵阳口碑最好的装修公司

网站被k表现,绵阳口碑最好的装修公司,淘宝开网店怎么运营,网站更换空间教程目录 引言 研究背景 方法介绍 核心思想 语义熵(Semantic Entropy) 语义熵引导的注意力机制 领域感知注意力模块 实验设计 数据集 实现细节 结果与分析 对比实验结果 消融实验 代码实现 结论 引言 领域自适应目标检测(Domain …

 

目录

引言

研究背景

方法介绍

核心思想

语义熵(Semantic Entropy)

语义熵引导的注意力机制

领域感知注意力模块

实验设计

数据集

实现细节

结果与分析

对比实验结果

消融实验

代码实现

结论


引言

领域自适应目标检测(Domain Adaptive Object Detection, DAOD)旨在将源域上训练的目标检测器迁移到未标注的目标域。传统方法主要通过对齐视觉特征来提取领域不变知识,而近期基于视觉语言模型(VLM)的方法则利用文本编码器提供的语义信息来补充领域特定特征。然而,现有方法忽略了语义信息在指导视觉特征学习中的作用,导致冗余信息和领域特定特征的丢失。本文提出的SEEN-DA模型通过语义熵引导的领域感知注意力机制,有效解决了这些问题。

研究背景

  1. 领域自适应目标检测的挑战​:

    • 领域之间的显著差异导致检测性能下降。
    • 传统方法主要关注视觉特征的对齐,忽视了语义信息的指导作用。
  2. 现有方法的局限性​:

    • 传统方法使用语义无关的类别标签(如one-hot编码),忽略了类别名称中的语义信息。
    • 基于VLM的方法冻结视觉编码器,仅利用语义信息在检测头中进行调整,限制了视觉特征的判别能力。

方法介绍

核心思想

本文提出了一种基于语义熵引导的领域感知注意力机制(SEEN-DA),通过以下两个分支来优化视觉特征:

  1. 跨领域注意力分支​:提取领域不变特征,消除冗余信息。
  2. 领域内注意力分支​:补充领域特定的语义信息。

语义熵(Semantic Entropy)

语义熵用于量化视觉特征中与特定领域相关的语义信息量。其计算公式如下:

SE(T,f)=−c∑​p(tc​,f)log(p(tc​,f))

其中,p(tc​,f) 表示视觉特征 f 属于类别 c 的概率,T 是文本嵌入向量。

语义熵引导的注意力机制

通过语义熵作为注意力权重,调整视觉特征的权重:

SEAttention(T,f)=c∑​p(tc​,f)log(p(tc​,f))+logK

其中,K 是类别数量。

领域感知注意力模块

该模块包含两个并行分支:

  1. 跨领域注意力分支​:

    • 使用共享的卷积模块捕获任务相关知识。
    • 通过语义熵引导的注意力机制,抑制冗余信息。
  2. 领域内注意力分支​:

    • 使用独立的卷积模块和文本嵌入,补充领域特定的语义信息。

Figure 2.(a) Overview of the proposed SEEN-DA for DAOD, where the semantic entropy is utilized as attention in domain-aware attention module.(b) The architecture of domain-aware attention module, consisting of an inter-domain and an intra-domain attention branch.

实验设计

数据集

  1. 跨天气适应(Cityscapes→Foggy Cityscapes)​​:

    • 源域:Cityscapes(晴天)
    • 目标域:Foggy Cityscapes(雾天)
  2. 跨视场适应(KITTI→Cityscapes)​​:

    • 源域:KITTI(乡村和高速公路场景)
    • 目标域:Cityscapes(城市道路场景)
  3. 模拟到真实适应(SIM10K→Cityscapes)​​:

    • 源域:SIM10K(虚拟场景)
    • 目标域:Cityscapes(真实场景)
  4. 跨风格适应(Pascal VOC→Clipart)​​:

    • 源域:Pascal VOC(真实图像)
    • 目标域:Clipart(卡通图像)

实现细节

  • 骨干网络​:RegionCLIP(ResNet-50)
  • 检测器​:Faster-RCNN
  • 优化器​:SGD
  • 学习率​:使用warm-up策略
  • 评估指标​:平均精度(mAP)

结果与分析

对比实验结果

  1. 跨天气适应(Cityscapes→Foggy Cityscapes)​​:

    • SEEN-DA的mAP达到57.5%,超过现有最佳方法DA-Pro 1.6%。
  2. 跨视场适应(KITTI→Cityscapes)​​:

    • SEEN-DA的mAP为67.1%,提升了5.7%。
  3. 模拟到真实适应(SIM10K→Cityscapes)​​:

    • SEEN-DA的mAP为66.8%,优于现有最佳方法SOCCER 3.0%。
  4. 跨风格适应(Pascal VOC→Clipart)​​:

    • SEEN-DA的mAP为47.9%,在六个类别上表现优异。

Figure 3. Detection comparison on the Cross-Weather adaptation scenario. We visualize(a) the ground truth, the detection boxes of(b)SOTA DA-Pro[23] and(c) our methods SEEN-DA.

消融实验

  1. 领域感知注意力模块的有效性​:

    • 跨领域注意力分支提升2.3% mAP。
    • 领域内注意力分支进一步提升1.7% mAP。
  2. 投影层的影响​:

    • 将视觉嵌入投影到文本空间(V2T)效果最佳,mAP达到57.5%。

Figure 4. Ablation(%) on the number of attention modules on Cross-Weather adaptation.

代码实现

由于论文未提供具体代码,以下是基于PyTorch的伪代码框架:

class DomainAwareAttention(nn.Module):def __init__(self, backbone, text_encoder):super().__init__()self.backbone = backboneself.text_encoder = text_encoderself.inter_attention = InterDomainAttention()self.intra_attention = IntraDomainAttention()def forward(self, source_img, target_img):# 提取视觉特征source_feat = self.backbone(source_img)target_feat = self.backbone(target_img)# 跨领域注意力inter_attention = self.inter_attention(source_feat, target_feat)# 领域内注意力intra_attention = self.intra_attention(source_feat, target_feat)return inter_attention, intra_attention

结论

本文提出的SEEN-DA模型通过语义熵引导的领域感知注意力机制,有效解决了领域自适应目标检测中的语义信息利用问题。实验结果表明,该方法在多个基准数据集上显著提升了检测性能,具有广泛的应用前景。

论文地址:https://openaccess.thecvf.com/content/CVPR2025/papers/Li_SEEN-DA_SEmantic_ENtropy_guided_Domain-aware_Attention_for_Domain_Adaptive_Object_CVPR_2025_paper.pdf

http://www.dtcms.com/wzjs/789734.html

相关文章:

  • 用织梦做的网站怎样看小说盗版网站怎么做
  • 建站套餐jsp网站地图生成器
  • 遵义创意网站设计天津制作网站
  • 网站网站制作服务建网站和开发网站
  • 广东网站建设哪家好平面设计素材网
  • 网站格式有哪些顾家家居网站是哪个公司做的
  • 网站空间续费后网页不能打开西安建筑工程有限公司
  • 云南住房与城乡建设厅网站手机网站制作平台有哪些
  • 外贸建站建在哪里精品课程网站的设计与建设要求
  • 关于做网站的调查问卷周大福网站设计特点
  • 电子书网站 自己做粮食网站建设的背景及意义
  • 做网站要学哪些wordpress扫公众号二维码登录
  • 常州市新北区建设局网站网站后台 登录界面模板 远吗
  • 网站建设的安全防护方法推动高质量发展心得体会
  • 怎么把网站管理系统集团响应式网站建设
  • 网站title江门模板建站定制
  • 网站备案接入商地方网站改版方案
  • 视频网站程序模板住院证明图片在线制作
  • 北京住总第一开发建设有限公司网站首页网址转app制作生成器
  • 优化的含义哈尔滨网络优化工程师
  • 做网站能用自己电脑吗wordpress主题模板免费
  • 软件下载网站哪个好众筹平台网站搭建
  • 口碑好的盐城网站建设全球最顶尖的设计公司
  • 简阳建设厅官方网站梅州建站怎么做
  • 本站3天更换一次域名yw网络设计院
  • 联想官方服务网站中国建设服务信息官网
  • 淄博做网站推广哪家好自己怎么做引流推广
  • 做app还是做网站职业生涯规划大赛规划书
  • 网站代下单怎么做公司名字大全三个字
  • 中小企业网站该怎么做贵州建设厅考试网站准考证下载