当前位置: 首页 > wzjs >正文

魏县审批建设的网站兰州网站运营

魏县审批建设的网站,兰州网站运营,seo搜索引擎优化就业前景,想学网站建设什么的文章目录 前言 一、LLaMA 3.1 的特点 二、LLaMA3.1的优势 三、LLaMA3.1部署流程 (一)创建实例 (二)通过JupyterLab登录实例 (3)部署LLaMA3.1 (4)使用教程 总结 前言 LLama3…

文章目录

前言

一、LLaMA 3.1 的特点

二、LLaMA3.1的优势

三、LLaMA3.1部署流程

(一)创建实例

(二)通过JupyterLab登录实例

(3)部署LLaMA3.1

(4)使用教程

总结


前言

LLama3.1 是 Meta(Facebook 母公司)发布的系列大语言模型之一,属于 LLaMA(Large Language Model Meta AI)模型系列。LLaMA 模型的目标是通过更高效的设计在保持模型性能的前提下,显著降低其计算和资源需求。LLaMA 3.1 是该系列的最新版本,继承了前面版本,如 LLaMA 1 和 LLaMA 2的许多技术优势,并对模型架构、训练数据和推理能力进行了改进。


一、LLaMA 3.1 的特点

LLaMA 3.1主要有以下4个特点:

  • 规模较大且高效:LLaMA 3.1 在参数量上相比前代有所增加,但在设计和训练过程中注重提高效率,因此能够在相对较少的资源下达到与更大模型相似的性能水平。

  • 更多的训练数据:该版本的模型通过更广泛、更丰富的语料库进行训练,覆盖了更多领域的信息,使得它在回答问题、生成内容以及自然语言理解方面更强大。

  • 优化的推理性能:LLaMA 3.1 通过对推理算法和模型架构的优化,减少了推理时间,提高了在不同任务上的响应速度。

  • 开源的方式:与前代模型类似,LLaMA 3.1 也继续采用开源模式,这意味着研究人员和开发人员可以在其基础上进行进一步的研究和开发。这种开放性是 Meta 希望推动 AI 社区共同进步的一个关键策略。


二、LLaMA3.1的优势

相较于 OpenAI 的 GPT 系列或 Google 的 PaLM 系列,LLaMA 系列模型的优势在于其高效性,即在保持较高的生成能力和理解能力的同时,资源消耗更低。LLaMA 3.1 通过对模型结构的精简和训练数据的多样化,在许多任务上能够提供接近甚至超过这些主流模型的性能。


三、LLaMA3.1部署流程

DAMODEL地址:丹摩DAMODEL|让AI开发更简单!算力租赁上丹摩!

(一)创建实例

(1)登录后点击控制台,选择GPU云实例并创建实例

(2)付费类型选择按量付费,示例配置选4 NVIDIA-L40S

(3)GPU、数据硬盘按照默认的即可

(4)镜像框架选择PyTorch 2.4.0,选择密钥对后点击立即创建

(5)实例状态变为运行中时即实例创建成功

(二)通过JupyterLab登录实例

(3)部署LLaMA3.1

使用conda 管理环境,DAMODEL示例已经默认安装了 conda 24.5.0 ,直接创建环境即可

在终端输入:

conda create -n llama3 python=3.12

效果图:

第一次在终端使用conda命令,需要先进行conda初始化,初始化完成后重新开下终端

conda init

效果图:

初始化后切换到新创建的环境

conda activate llama3

安装LLaMA3.1需要的依赖

pip install langchain==0.1.15
pip install streamlit==1.36.0
pip install transformers==4.44.0
pip install accelerate==0.32.1

效果图:

依赖安装完毕后,需要下载Llama-3.1-8B模型,使用命令进行内网下载Llama-3.1-8B-Instruct模型即可

wget http://file.s3/damodel-openfile/Llama3/Llama-3.1-8B-Instruct.tar

效果图:

模型下载完成后解压缩Llama-3.1-8B-Instruct.tar

tar -xf Llama-3.1-8B-Instruct.tar

(4)使用教程

Llama-3.1-8B模型下载完成后,新建llamaBot.py文件,输入以下内容:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st# 创建一个标题和一个副标题
st.title("💬 LLaMA3.1 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")# 定义模型路径
mode_name_or_path = '/root/workspace/Llama-3.1-8B-Instruct'# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():# 从预训练的模型中获取tokenizertokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)tokenizer.pad_token = tokenizer.eos_token# 从预训练的模型中获取模型,并设置模型参数model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16).cuda()return tokenizer, model# 加载LLaMA3的model和tokenizer
tokenizer, model = get_model()# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:st.session_state["messages"] = []# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:st.chat_message(msg["role"]).write(msg["content"])# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():# 在聊天界面上显示用户的输入st.chat_message("user").write(prompt)# 将用户输入添加到session_state中的messages列表中st.session_state.messages.append({"role": "user", "content": prompt})# 将对话输入模型,获得返回input_ids = tokenizer.apply_chat_template(st.session_state["messages"],tokenize=False,add_generation_prompt=True)model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512)generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]# 将模型的输出添加到session_state中的messages列表中st.session_state.messages.append({"role": "assistant", "content": response})# 在聊天界面上显示模型的输出st.chat_message("assistant").write(response)print(st.session_state)

在终端中运行以下命令启动 streamlit 服务,server.port 可以更换端口:

streamlit run llamaBot.py --server.address 0.0.0.0 --server.port

使用丹摩平台提供的端口映射功能,将内网端口映射到公网:

添加好后,通过示例端口的访问链接即可打开LLaMA3.1 Chatbot交互界面,可以跟该机器人进行对话


四、总结


本文介绍了 LLaMA 3.1 模型的特点、优势以及在 DAMODEL 平台上的部署流程。LLaMA 3.1 是 Meta 发布的最新大语言模型,具有高效的计算设计和优异的推理性能。其主要优势在于相较于 OpenAI 的 GPT 系列或 Google 的 PaLM 系列,LLaMA 3.1 在消耗较少资源的情况下依然能够提供强大的生成和理解能力。

文章还详细描述了如何通过 DAMODEL 平台部署 LLaMA 3.1 的步骤,从创建 GPU 实例,到配置环境(使用 conda 管理 Python 环境),再到安装必要的依赖和下载模型文件。最后,还展示了如何构建一个基于 Streamlit 的聊天机器人,通过 LLaMA 3.1 生成对话内容并与用户交互。

http://www.dtcms.com/wzjs/785766.html

相关文章:

  • 不备案的网站能上去吗个人网站什么语言做
  • 做海报的网站有哪些内容不会做网站
  • 做h5的图片网站微信小程序制作软件免费
  • 学院网站建设规划新能源电动汽车价格表
  • 南宁网站设计推荐安监局网站做应急预案备案
  • wordpress淘宝推广百度的seo关键词优化怎么弄
  • 网站建设市场价国家企业公司网站建设
  • 网站开发需要哪些条件wordpress 评论去审核
  • php语言做的大网站工商营业执照网上年审入口
  • 人才招聘网站开发+源代码linux服务器wordpress
  • 高仿奢侈手表网站判断网站是什么系统做的
  • 珠海网站制作推广公司哪家好郑州网站建设 天强科技
  • 西宁公司网站设计中国第一个做电商网站
  • 创建企业网站下载公众号
  • 小榄做网站上海市网站建设
  • 在线做qq空间的网站wordpress 小视频模板
  • 爱站关键词挖掘软件西安推荐企业网站制作平台
  • 大型网站维护费用怎么查网站的备案号
  • 叫别人做网站要多久淄博网站建设卓迅网络
  • 建设工程招投标网站杭州网站制作工具
  • 把网站放到域名上河南宝盈建设工程有限公司网站
  • 中学生设计的网站如何看出一个网站优化的是否好
  • 网站设计公司服务平台哈尔滨h5模板建站
  • 网页设计与网站开发试卷手机上部署网站
  • 怎么做二级网站百度 营销推广多少钱
  • 模板建站优点网店代运营
  • 网站的类型主要有免费做网站怎么做网站吗2
  • asp网站怎样做app网站建设如何做报价
  • 五金网站模板注册公司流程和费用大概多少钱
  • 嘉兴做网站公司哪家好北京网站建设外包公司哪家好