当前位置: 首页 > wzjs >正文

网站布局分析金融网站推广圳seo公司

网站布局分析,金融网站推广圳seo公司,百度网页推广费用,软件工程师的就业前景🎯 今日目标 掌握 Pandas 中 groupby() 的使用方式学会使用 agg() 方法进行多个聚合掌握 pivot_table() 构建透视表结合分组与排序进行更深入的分析 🧮 一、基本分组统计(groupby) ✅ 分组 单列聚合 df.groupby("性别&qu…

🎯 今日目标

  • 掌握 Pandas 中 groupby() 的使用方式
  • 学会使用 agg() 方法进行多个聚合
  • 掌握 pivot_table() 构建透视表
  • 结合分组与排序进行更深入的分析

🧮 一、基本分组统计(groupby)

✅ 分组 + 单列聚合

df.groupby("性别")["成绩"].mean()

输出(示例):

性别
女    75.2
男    72.3

✅ 分组 + 多列聚合

df.groupby("性别")[["成绩", "是否及格"]].mean()

🔧 二、自定义聚合(agg)

✅ 一个字段多个聚合函数

df.groupby("性别")["成绩"].agg(["mean", "max", "min", "count"])

✅ 多字段多个聚合函数

df.groupby("性别").agg({"成绩": ["mean", "std"],"是否及格": "sum"
})

📊 三、透视表(pivot_table)

pd.pivot_table(df, values="成绩", index="性别", columns="是否及格", aggfunc="mean")

可以理解为 Excel 中的“数据透视表”


🔁 四、结合分组后的排序

grouped = df.groupby("性别")["成绩"].mean().reset_index()
grouped.sort_values("成绩", ascending=False)

🧪 今日练习任务

继续使用 students_cleaned.csv,完成以下练习:

  1. 按性别统计学生人数

  2. 按性别统计平均成绩、最高分、最低分

  3. 按性别和是否及格双重分组,统计各组平均成绩

  4. 构建透视表,显示是否及格和性别的成绩均值交叉表

  5. 输出平均成绩最高的性别组

    import pandas as pd
    import os# 路径设置
    input_path = "data/students_cleaned.csv"if not os.path.exists(input_path):raise FileNotFoundError("❌ 找不到文件:data/students_cleaned.csv,请先运行清洗脚本。")# 加载数据
    df = pd.read_csv(input_path)
    print("✅ 已加载清洗后的学生数据:")
    print(df.head())# 1. 按性别统计人数
    print("\n👥 每个性别的学生人数:")
    print(df["性别"].value_counts())# 2. 按性别统计平均成绩、最高分、最低分
    print("\n📊 各性别的成绩统计:")
    gender_stats = df.groupby("性别")["成绩"].agg(["mean", "max", "min", "count"])
    print(gender_stats)# 3. 按性别 & 是否及格 进行双重分组统计平均成绩
    print("\n📊 按性别和是否及格分组的平均成绩:")
    multi_group = df.groupby(["性别", "是否及格"])["成绩"].mean()
    print(multi_group)# 4. 构建透视表:性别 vs 是否及格
    print("\n📊 透视表(性别 × 是否及格 → 平均成绩):")
    pivot = pd.pivot_table(df, values="成绩", index="性别", columns="是否及格", aggfunc="mean")
    print(pivot)# 5. 平均成绩最高的性别组
    print("\n🏆 平均成绩最高的性别:")
    top_group = gender_stats["mean"].idxmax()
    top_score = gender_stats["mean"].max()
    print(f"{top_group}(平均成绩:{top_score:.2f})")# 6. (可选)保存统计结果
    output_path = "data/gender_group_stats.csv"
    gender_stats.to_csv(output_path, encoding="utf-8")
    print(f"\n✅ 性别分组统计结果已保存到 {output_path}")
    

    输出示例:

    ✅ 已加载清洗后的学生数据:姓名 性别    成绩  是否及格
    0  张三   男  88.0   True
    1  李四   女  73.5   True
    2  王五   男  59.0  False
    3  田七   女  73.5  False👥 每个性别的学生人数:
    女    22
    Name: 性别, dtype: int64📊 各性别的成绩统计:mean   max   min  count
    性别                            
    女      73.5  73.5  73.5      273.5  88.0  59.0      2📊 按性别和是否及格分组的平均成绩:
    性别  是否及格
    女   False    73.5True      73.5False    59.0True      88.0
    Name: 成绩, dtype: float64📊 透视表(性别 × 是否及格 → 平均成绩):
    是否及格     False  True
    性别                    
    女         73.5  73.559.0  88.0🏆 平均成绩最高的性别:
    女(平均成绩:73.50)✅ 性别分组统计结果已保存到 data/gender_group_stats.csv
    

    gender_group_stats.csv在这里插入图片描述


📌 补充知识点

  • groupby() 默认返回的是“分组后对象”,需要用聚合函数 .mean().sum().agg() 等触发计算
  • 你可以使用 .reset_index() 将 groupby 的结果还原为 DataFrame 格式,便于后续排序、可视化等

✍️ 今日总结

  • 理解并掌握了 Pandas 中 groupby 的用法
  • 学会了使用 agg() 进行自定义多重聚合
  • 学会了构建透视表并进行交叉分析
  • 初步具备了分组维度下的深层次分析能力

题外话

在这里插入图片描述

http://www.dtcms.com/wzjs/78334.html

相关文章:

  • 什么是功能型网站市场营销计划方案
  • 合肥seo网站优化谷歌浏览器官网入口
  • 做外贸去哪些网站找老外推广关键词排名方法
  • 小语种网站制作电商还有发展前景吗
  • 苏州市建设局网站集群统一登录广告引流推广平台
  • 卖建材的网站ue5培训机构哪家强
  • 做微信的微网站费用软件推广方案经典范文
  • 杭州营销型网站建设工作室百度排行榜
  • 建设内部网站目的南宁优化网站收费
  • 网站已收录的404页面的查询南京seo
  • 企业服务 免费网站建设深圳seo专家
  • 当当网站建设与易趣网站对比搜索引擎优化网站排名
  • 哪里有做兼职的网站建网站专业
  • 如何用二级域名做网站布奏站长平台工具
  • 西安网站建设托管itme收录优美图片官网
  • 怎么做兼职类网站吗北京seo优化外包
  • 网站建设售后报价app开发公司推荐
  • 视频网站直播怎么做好的在线crm系统
  • 建设银行国际互联网网站是什么百度一下网页版搜索引擎
  • 仁怀网站建设不好出手东莞推广公司
  • 网站开发需要哪些人怎么分工seo站长工具平台
  • 中国疫情最新消息哪里严重整站seo怎么做
  • 海淀西北旺网站建设小红书seo优化
  • 深圳住房和建设局网站故障西安小程序开发的公司
  • 企业网站 html5百度关键词屏蔽
  • 母婴网站设计开发微博上如何做网站推广
  • 梦织做网站自动引流免费app
  • 有哪些好的做兼职网站有哪些做企业网站建设公司哪家好
  • 建设网站的原则女装关键词排名
  • 黑龙江俄语网站制作百度账号一键登录