当前位置: 首页 > wzjs >正文

淘宝电子网站建设论文高端画册定制印刷公司

淘宝电子网站建设论文,高端画册定制印刷公司,蔬菜基地做网站合适吗,高端网站配色目标 输入:你是谁? 输出:我们预训练的名字。 训练 为了性能好下载小参数模型,普通机器都能运行。 下载模型 # 方式1:使用魔搭社区SDK 下载 # down_deepseek.py from modelscope import snapshot_download model_…

目标

输入:你是谁?

输出:我们预训练的名字。

训练

为了性能好下载小参数模型,普通机器都能运行。

下载模型

# 方式1:使用魔搭社区SDK 下载
# down_deepseek.py
from modelscope import snapshot_download
model_dir = snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')# 方式2:git lfs 
# 需要提前安装git大文件存储 git-lfs
# 在线查看 https://www.modelscope.cn/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
git lfs install
git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.git

训练模型

# finetune_deepseek.py
from datasets import Dataset
from transformers import (AutoModelForCausalLM,AutoTokenizer,TrainingArguments,Trainer,DataCollatorForLanguageModeling
)# 加载模型和分词器
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)# 准备训练数据
train_data = [{"question": "你是谁?","answer": "我是黄登峰。"},{"question": "你的名字是什么?","answer": "黄登峰"},{"question": "你是做什么的?","answer": "我是深圳一家公司打工的牛马程序员。"},# 在这里添加更多的问答对
]test_data = [{"question": "你的名字是什么?","answer": "我的名字是黄登峰。"}
]
def format_instruction(example):"""格式化输入输出对"""return f"Human: {example['question']}\n\nAssistant: {example['answer']}"# 转换数据格式
train_formatted_data = [{"text": format_instruction(item)} for item in train_data]
test_formatted_data = [{"text": format_instruction(item)} for item in test_data]
train_dataset = Dataset.from_list(train_formatted_data)
test_dataset = Dataset.from_list(test_formatted_data)# 数据预处理函数
def preprocess_function(examples):return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)# 对数据集进行预处理
train_tokenized_dataset = train_dataset.map(preprocess_function,batched=True,remove_columns=train_dataset.column_names
)test_tokenized_dataset = test_dataset.map(preprocess_function,batched=True,remove_columns=test_dataset.column_names
)
output_dir = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"# 训练参数设置
training_args = TrainingArguments(output_dir=output_dir,num_train_epochs=3,per_device_train_batch_size=4,save_steps=100,save_total_limit=2,learning_rate=2e-5,weight_decay=0.01,logging_dir="./logs",logging_steps=10,
)# 创建训练器
trainer = Trainer(model=model,args=training_args,train_dataset=train_tokenized_dataset,eval_dataset=test_tokenized_dataset,data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)# 开始训练
trainer.train()# 保存模型
trainer.save_model()
# 保存tokenizer
tokenizer.save_pretrained(output_dir)

模型格式

训练后的模型输出格式是Hugging Face格式,vllm 可以直接使用,ollama,llama.cpp默认是GGUF格式。

# 需要用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换
git clone https://github.com/ggerganov/llama.cpp.git
pip install -r llama.cpp/requirements.txt
# 如果不量化,保留模型的效果
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B  --outtype f16 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf
# 如果需要量化(加速并有损效果),直接执行下面脚本就可以
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B  --outtype q8_0 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf

验证

# test_model.py
from transformers import AutoModelForCausalLM, AutoTokenizer
import torchdef generate_response(prompt, model, tokenizer, max_length=512):# 将输入格式化为训练时的格式formatted_prompt = f"Human: {prompt}\n\nAssistant:"# 对输入进行编码inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True, truncation=True)# 生成回答with torch.no_grad():outputs = model.generate(inputs.input_ids,max_length=max_length,num_return_sequences=1,temperature=0.7,do_sample=True,pad_token_id=tokenizer.pad_token_id,eos_token_id=tokenizer.eos_token_id,)# 解码输出response = tokenizer.decode(outputs[0], skip_special_tokens=True)# 提取Assistant的回答部分response = response.split("Assistant:")[-1].strip()return responsedef main():# 加载微调后的模型和分词器model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)# 准备测试问题test_questions = ["你是谁?","你的名字是什么?","你是做什么的?",]# 测试模型回答print("开始测试模型回答:")print("-" * 50)for question in test_questions:print(f"问题: {question}")response = generate_response(question, model, tokenizer)print(f"回答: {response}")print("-" * 50)if __name__ == "__main__":main()

http://www.dtcms.com/wzjs/775163.html

相关文章:

  • 贵州做网站的公司域名怎么查
  • 来年做哪些网站能致富seo网站关键词优化价格
  • 做软装什么网站可以吗广告优化师工资一般多少
  • 自己有域名和服务器如何做网站汽车充电桩网站建设中企动力技术支持
  • 建筑网站案例wordpress后台自定义页面
  • 手机网站有哪些北京企业网站建设制作
  • 做网站要用到哪些架包网站优化软件排名
  • 网络公司电话是多少重庆百度提升优化
  • 苏州哪家公司做网站室内设计3d效果图用什么软件
  • 有特色的企业网站制作网站学什么软件
  • 文章类网站程序国土网站建设自查报告
  • 做淘客都有什么网站做网站要下载的软件
  • 网站备案最快多久北京信息网站建设
  • 便宜网站空间厦门专业网站推广
  • 如何扁平化设计网站代刷网址推广
  • org后缀的网站大方网站制作
  • 学网站开发跟那个专业最相近wordpress还原
  • 深圳知名seo公司seowhy官网
  • 中咨城建设计有限公司官方网站wordpress调用搜索功能
  • 数据库查询网站建设河北建筑培训网官网
  • 家庭nas可以做网站服务器推送网站建设
  • 做网站广告的点wordpress看到网络蜘蛛
  • 沈阳网站维护软件开发模型有几种各有什么特点
  • 建站公司排名长沙购物网站建设
  • 陕西省建设工程质量安全监督总站网站绍兴微网站建设
  • 校园网网站的安全建设方案asp 网站地图生成
  • 如何做网站相册个人网站建设的背景
  • 怎么让自己的网站被百度收录wordpress注册登录右边
  • 长沙公司建设网站沐雪专业网站建设
  • 网站 备案 固话环艺做网站