当前位置: 首页 > wzjs >正文

天津网站建设制作在线正能量网站地址链接免费

天津网站建设制作,在线正能量网站地址链接免费,建设网站公司选哪家好,网站建设中 显示 虚拟机损失函数的目的是为了定量描述不同模型(例如神经网络模型和人脑模型)的差异。 交叉熵,顾名思义,与熵有关,先把模型换成熵这么一个数值,然后用这个数值比较不同模型之间的差异。 为什么要做这一步转换&…

损失函数的目的是为了定量描述不同模型(例如神经网络模型和人脑模型)的差异。

交叉熵,顾名思义,与熵有关,先把模型换成熵这么一个数值,然后用这个数值比较不同模型之间的差异。

为什么要做这一步转换,原因是要直接比较两个模型,前提是两个模型是同一种类型,比如都是高斯分布,我们可以比较均值和方差。但现实中,我们要比较的两种模型往往不是同一种类型,甚至我们都不知道是什么类型。所以我们通过熵实现不同类型概率模型的公度


熵的前置知识

1. 信息量

衡量一个信息有没有信息量,不是看这个消息你知不知道,关键是看能带来多少确定性,也可以说能消除多少不确定性。

例如有8支队伍参加比赛,其中一支队伍名为“AI小队”。理论上来说,“AI小队”夺冠概率为1/8。但如果告诉你“AI小队”夺冠了,夺冠概率从1/8变为百分之百;但如果告诉你“AI小队”进入总决赛了,夺冠概率从1/8变为1/2,但直观上感觉这个信息量不如夺冠信息的信息量高。

通过上述例子我们大概能明白不同的信息,含有的信息量是不同的。那如何定义信息量呢?


***题外话***

所谓定义,就是人为规定它的意义,给出一个表达式,至于这个表达式为什么这么写而不那么写,原因是最先提出的人就是这么写的,并且逻辑得到了自洽,后人为了统一标准,便沿用了这个定义。你也可以给出自己的定义,但为了让体系自洽,可能其他与该定义相关的表达式就要重写。


首先,从直观上来说,一件事发生的概率越低,其包含的信息量越大;反之一件事发生的概率越大,包含的信息量越少。例如,我告诉你太阳每天东升西落,这对你来说没有任何信息量,因为这件事情的概率是1;但假如我告诉你下一期双色球中奖号码是某某某(假如是正确的话),那这个消息的信息量就很大了。因此信息量与事件发生的概率是相关的。

其次,假如一个事件可以被分解成多个事件,该事件的信息量等于多个事件信息量的和。现在我们假设f(x)是信息量的一个表达式,根据上面举的例子,该表达式应该满足如下要求:

f(AI小队夺冠(进决赛且赢得决赛)) = f(AI小队进入决赛)+f(AI小队进入决赛后还赢了决赛)

f(\frac{1}{8})=f(\frac{1}{4} \times \frac{1}{2})=f(\frac{1}{4})+f(\frac{1}{2})

乘法变加法,熟悉的感觉,是log!!!信息量能不能定义成log(P_{i})呢,其中P_{i}为事件i发生的概率。如此以来第二个条件满足了,但是这样的话信息量会随着事件发生概率的增大而增大,那怎么办呢?加个负号。

所以如果我们把一个事件的信息量定义为如下公式,逻辑就能自洽

H_{i}=-log(P_{i})

通常我们log以2为底,计算出的信息量的单位是比特(bit)。原因是计算机是二进制的,我们的信息量衡量了一个信息的最短编码(不理解的同学可忽略)。

2.熵

通过上面的分析,我们给出了信息量的定义。信息量可以理解成一个事件从原来的不确定性变得确定难度有多大,信息量比较大说明难度比较高。熵的理解也类似,不过熵衡量的不是某个具体事件,而是一个系统中所有的事件,即一个系统从原来的不确定到确定,其难度有多大。

我们可以把一场比赛看作一个系统。假如两个实力相近的队伍比赛,两只队伍胜利的概率都是\frac{1}{2},那这两只队伍赢球的信息量都是:

I=-log_{2}\frac{1}{2}=1

但如果是两只实力悬殊的队伍比赛,队伍A胜利的概率是99%,队伍B胜利的概率为1%,那两只队伍赢球的信息量分别为:

I_{A}=-log_{2}\frac{99}{100}\approx 0.0145

I_{B}=-log_{2}\frac{1}{100}\approx 6.6439

那球赛的熵是两只队伍赢球的信息量的加和么?

显然不是,因为如果是加和的话,实力悬殊队伍的比赛结果相对来说是确定的,大概率是实力强的队伍赢得比赛,所以它的不确定性是低的,但此时它的熵却是高的,所以熵并不是信息量的简单加和。

我们需要考虑每个事件对系统贡献的信息量,事件只有发生了,才会贡献信息量,所以系统的熵定义为信息量的期望:

H:= E(I)\\\\=\sum _{i=1}^{m}p_{i}I_{i}\\\\=\sum _{i=1}^{m}p_{i}(-log_{2}p_{i})\\\\=-\sum _{i=1}^{m}p_{i}\cdot log_{2}p_{i}

3.相对熵(KL散度)

我们的目的是要比较两个模型,最简单的方法就是把概率模型的熵计算出来然后直接比较熵的数值,但并不是所有概率模型我们都能求熵。因此引出另外一个概念——相对熵,也叫KL散度,其定义如下:

D_{KL}(P||Q)\\\\:=\sum _{i=1}^{m}p_{i}\cdot (I_{Q_{i}}-I_{P_{i}})\\\\=\sum _{i=1}^{m}p_{i}\cdot((-log_{2}q_{i})-(-log_{2}p_{i}))\\\\=\sum _{i=1}^{m}p_{i}\cdot(-log_{2}q_{i})-\sum _{i=1}^{m}p_{i}\cdot(-log_{2}p_{i})\\\\=H(P,Q)-H(P)

KL散度等于0表明两个分布是一样的,不等于0表示两者有差别。其中QP分别表示两个概率分布,D_{KL}(P||Q)表示以P为基准(P在前),用Q近似P式损失了多少信息,I_{Q_{i}}表示某个事件在系统Q中的信息量,H(P,Q)表示交叉熵,H(P)表示概率分布P的熵,我们以P为基准的话,这个值是不会变的。

由公式可知,H(P,Q)H(P)都是大于0的,但是两者谁更大呢?这是很重要的,因为如果KL散度大于零,要使得KL越接近于0,就得让交叉熵越小;如果KL散度小于0,要使得KL散度越接近于0,就得让交叉熵越大。

吉布斯不等式已经证明KL散度是恒大于等于0的(感兴趣的小伙伴可自行检索证明过程),那现在我们如果想让概率分布Q接近P,只需要最小化两者的交叉熵即可,也就是说交叉熵可作为损失函数对模型进行优化


通过前置知识,我们引出了交叉熵,并且明白了为什么交叉熵可以衡量两个概率分布之间的差异,也就是说可以用作损失函数。那么在神经网络中,我们该如何利用交叉熵呢?首先我们回顾一下交叉熵的定义:

H(P,Q)=\sum _{i=1}^{m}p_{i}\cdot(-log_{2}q_{i})

我们只需要用训练神经网络场景中的变量替换公式中的变量即可。

m表示分类的个数,在判断图像是不是猫的二分类任务中,i的取值只有两个,即i=1表示图像是猫,i=2表示图像不是猫;对应的,p_{i}表示每个事件发生的概率,即当前图像是猫的概率和不是猫的概率,在模型训练场景中,我们以人脑中的概率模型为基准,即以标签为基准,所以p_{1}=yp_{2}=(1-y),其中y表示人类给图像的标签,是猫为1,不是猫为0;q则对应模型预测的当前图像是猫的概率,即\widehat{y},而不是猫的概率就是(1-\widehat{y}),所以交叉熵用于神经网络中的形式如下:

H=-[y\cdot log_{2}\widehat{y}+(1-y)\cdot log_{2}(1-\widehat{y})]

当然这里是二分类的情况,如果是多分类,交叉熵可进一步写为:

H=-\sum _{i=1}^{m}y_{i}\cdot log(\widehat{y_{i}})

其中i表示类别数,y_{i}表示是类别i的概率(标签),\widehat{y_{i}}表示模型预测的是类别i的概率。


至此,我们通过信息量和熵引出交叉熵,并介绍了交叉熵是如何用于损失计算的,希望能够对有需要的伙伴提供帮助,如果文中有歧义或者有错误的地方,欢迎大家在评论区指出!


文章转载自:

http://vu2rOtdI.yfpnL.cn
http://Yg8TSDvN.yfpnL.cn
http://PF8kSgwx.yfpnL.cn
http://niC7NbFC.yfpnL.cn
http://xObPUJHA.yfpnL.cn
http://DiSiYuYD.yfpnL.cn
http://V2JVJmXy.yfpnL.cn
http://4B0L4JJe.yfpnL.cn
http://6DiOtt9W.yfpnL.cn
http://uxMj8GkL.yfpnL.cn
http://HwzCUdbK.yfpnL.cn
http://oF3RHip7.yfpnL.cn
http://w4gT1Q4o.yfpnL.cn
http://Id6cha7Y.yfpnL.cn
http://Dhtk6niE.yfpnL.cn
http://LOH6VtXW.yfpnL.cn
http://S7hLD2Pe.yfpnL.cn
http://d5l9eTwT.yfpnL.cn
http://6YJ56VwS.yfpnL.cn
http://mlXjhaH9.yfpnL.cn
http://TGPAWjpH.yfpnL.cn
http://ZKLyU9Ef.yfpnL.cn
http://i0J367GD.yfpnL.cn
http://4EREQP1U.yfpnL.cn
http://PdTaJZBb.yfpnL.cn
http://Dz9IWwvL.yfpnL.cn
http://Gtu50Y7O.yfpnL.cn
http://UEzjf8iz.yfpnL.cn
http://9gVMHlDH.yfpnL.cn
http://UVQAXSqL.yfpnL.cn
http://www.dtcms.com/wzjs/744398.html

相关文章:

  • 关于做书的网站网络公司 网站设计
  • 楚雄州建设局网站电子商务网站建设及维护管理
  • 做网站要准备什么为网站做推广
  • 网站的网页建设知识ppt模板昆明做网站seo
  • 十堰网站建设是什么企业宣传方式有哪些
  • 西安网站设计试听中国室内设计师协会
  • 自己的网站怎么制作移动网站设计
  • 域名可以同时做邮箱和网站么看广告赚钱一天50元
  • 北京微信网站开发筑龙网登录
  • 理财网站开发文档江西做网站哪家好
  • 做网站选什么专业网站建设要学多少课程
  • 三门县正规营销型网站建设地址产品设计专业大学排名
  • 建设通网站的信息是哪里来的应用商城软件下载 app
  • 完全自定义纯代码打造你的wordpress站点侧边栏wordpress linux 安装
  • 在哪里可以学到做网站网站抄袭
  • 山西网站推广公司百度联盟app
  • 电商平台网站运营方案特别酷炫网站
  • 淮安市建设工程安全监督站网站青岛永诚网络科技有限公司
  • 重庆万州网站建设哪家好关键词免费
  • 国内建设网站丽水建设部门网站
  • 网站建设哪家公司比较好中国视觉设计网站
  • 网站评论怎么做电子商务网站开发背景和意义
  • 友链对网站seo有帮助吗美工培训班学
  • 南昌网站建设服务器合肥网站开发外包公司
  • 二手房房产网站建设北京网站建设汉邦
  • 长春火车站现在正常通车吗重庆麻花制作
  • 以绿色为主色调的网站免费外贸电商平台
  • 网站建设套模版安卓app开发技术
  • 汽车服务站建站流程军事新闻头条
  • 权威网站建设公司wordpress 评论后