基于web的网站建设步骤杭州关键词优化平台
1. 数组中的第K个最大元素
给定整数数组 nums
和整数 k
,请返回数组中第 k
个最大的元素。
请注意,你需要找的是数组排序后的第 k
个最大的元素,而不是第 k
个不同的元素。
你必须设计并实现时间复杂度为 O(n)
的算法解决此问题。
示例 1:
输入:[3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入:[3,2,3,1,2,4,5,5,6],k = 4
输出: 4
提示:
1 <= k <= nums.length <= 105
104 <= nums[i] <= 104
题解
非常经典的堆问题,在AcWing里学过类似的。直接套用就可以了。
class Solution {
public:// 建大根堆vector<int> heap;int size = 0;void up(int x) {while(x && (heap[x / 2] < heap[x])) {swap(heap[x], heap[x / 2]);x = x / 2;}}void down(int x) {int t = x;if(x * 2 < size && heap[x * 2] >= heap[t]) t = x * 2;if(x * 2 + 1 < size && heap[x * 2 + 1] >= heap[t]) t = x * 2 + 1;if(t != x) {swap(heap[x], heap[t]);down(t);}}int findKthLargest(vector<int>& nums, int k) {int n = nums.size();heap = vector<int>(n);for(int i = 0; i < n; i ++ ) {// 插入heap[size] = nums[i];up(size);size ++;}for(int i = 0; i < k - 1; i ++ ) {//删除堆顶swap(heap[0], heap[size - 1]);size --;down(0);}return heap[0];}
};
2. 前K个高频元素
给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入:nums = [1,1,1,2,2,3], k = 2
输出:[1,2]
示例 2:
输入:nums = [1], k = 1
输出:[1]
提示:
1 <= nums.length <= 105
k
的取值范围是[1, 数组中不相同的元素的个数]
- 题目数据保证答案唯一,换句话说,数组中前
k
个高频元素的集合是唯一的
**进阶:**你所设计算法的时间复杂度 必须 优于 O(n log n)
,其中 n
**是数组大小。
题解
用c++自带的优先队列来实现堆。
小根堆:priority_queue<PII, vector, greater> heap;
大根堆:priority_queue<PII, vector, less>heap;
pair<int, int> 首先判断第一个元素,再判断第二个元素来排序。
使用unordered_map<int, int> 来存储每个数出现了多少次。
typedef pair<int, int> PII;class Solution {
public:vector<int> topKFrequent(vector<int>& nums, int k) {unordered_map<int, int> map;for(int num : nums) {map[num] ++;}priority_queue<PII, vector<PII>, greater<PII> > heap;for(auto& [num, count] : map) {if(heap.size() == k) {if(count > heap.top().first ) {heap.pop();heap.push({count, num});}} else {heap.push({count, num});}}vector<int> ans(k);for(int i = 0; i < k; i ++ ) {ans[i] = heap.top().second;heap.pop();}return ans;}
};
3. 数据流的中位数
中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。
- 例如
arr = [2,3,4]
的中位数是3
。 - 例如
arr = [2,3]
的中位数是(2 + 3) / 2 = 2.5
。
实现 MedianFinder 类:
MedianFinder()
初始化MedianFinder
对象。void addNum(int num)
将数据流中的整数num
添加到数据结构中。double findMedian()
返回到目前为止所有元素的中位数。与实际答案相差105
以内的答案将被接受。
示例 1:
输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
提示:
105 <= num <= 105
- 在调用
findMedian
之前,数据结构中至少有一个元素 - 最多
5 * 104
次调用addNum
和findMedian
题解
用两个优先队列,queMax和queMin:
queMax:存比中位数大的数,小根堆,堆顶是堆中最小的数。
queMin:存比中位数小的数,大根堆,堆顶是堆中最大的数。
如果queMax和queMin大小相等,中位数就是二者的平均。如果大小不相等,那么我们需要使得小根堆一定比大根堆更大,把中位数设置为queMin.top()。
因此,需要加入一个数时:
- 如果堆为空,把数加入到queMin中。
- 如果数比中位数小,把它加入到queMin中,并调整queMin和queMax的大小,使得queMin.size() == queMax.size() 或者 queMin.size() == queMax.size() + 1。
- 否则,把它加入到queMax中,并调整queMin和queMax的大小,使得queMin.size() == queMax.size() 或者 queMin.size() == queMax.size() + 1。
调整大小的方法就是把数更多的那一方的top弹出,弹出的数加入到另一方中。
class MedianFinder {
public:priority_queue<int, vector<int>, greater<int> > queMax;priority_queue<int, vector<int>, less<int> > queMin;MedianFinder() {}void addNum(int num) {if(queMin.size() == 0 || num <= findMedian()) {queMin.push(num);if(queMin.size() > queMax.size() + 1) {queMax.push(queMin.top());queMin.pop();}}else {queMax.push(num);if(queMax.size() > queMin.size()) {queMin.push(queMax.top());queMax.pop();}}}double findMedian() {if(queMax.size() == queMin.size()) {return (queMax.top() + queMin.top()) / 2.0;}else return queMin.top();}
};/*** Your MedianFinder object will be instantiated and called as such:* MedianFinder* obj = new MedianFinder();* obj->addNum(num);* double param_2 = obj->findMedian();*/