当前位置: 首页 > wzjs >正文

天河外贸网站建设上海哪家做网站

天河外贸网站建设,上海哪家做网站,基于ssh架构网站开发,网站建设高清图片第一章 使用说明 类别自己在代码中改,其他四个参数 --json-folder:json文件夹路径 --txt-folder:转换成功后txt的存放路径 --images-dir:图片文件夹路径 --save-dir:转换完成分割后所有文件的路径 终端命令行:p…

第一章  使用说明

类别自己在代码中改,其他四个参数

--json-folder:json文件夹路径

--txt-folder:转换成功后txt的存放路径

--images-dir:图片文件夹路径

--save-dir:转换完成分割后所有文件的路径

终端命令行:python split_conversion.py --json-folder "" --txt-folder "" --images-dir "" --save-dir ""

""处是四个路径

第二章 导包

import json
import os
from tqdm import tqdm
import shutil
import random
import argparse

第三章 转换格式函数

def labelme_json_to_yolo(txt_save_path, json_path, class_map):"""将LabelMe格式JSON转换为YOLO TXT标注文件:param txt_save_path: TXT保存路径:param json_path: LabelMe JSON文件路径:param class_map: 类别名映射字典(如{"person": 0})"""with open(json_path, 'r', encoding='utf-8') as f:data = json.load(f)img_height = data["imageHeight"]img_width = data["imageWidth"]img_name = os.path.basename(data["imagePath"])  # 提取图片文件名txt_name = os.path.splitext(img_name)[0] + ".txt"txt_path = os.path.join(txt_save_path, txt_name)lines = []for shape in data["shapes"]:label = shape["label"]if label not in class_map:continue  # 跳过未定义类别cls_id = class_map[label]# 解析多边形/矩形标注为边界框(xmin, ymin, xmax, ymax)points = shape["points"]x_coords = [p[0] for p in points]y_coords = [p[1] for p in points]xmin = min(x_coords)ymin = min(y_coords)xmax = max(x_coords)ymax = max(y_coords)# 计算YOLO格式坐标(归一化中心坐标+宽高)x_center = (xmin + xmax) / (2 * img_width)y_center = (ymin + ymax) / (2 * img_height)w = (xmax - xmin) / img_widthh = (ymax - ymin) / img_height# 过滤无效坐标(避免越界)if 0 <= x_center <= 1 and 0 <= y_center <= 1 and w > 0 and h > 0:lines.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}")# 保存TXT文件with open(txt_path, 'w') as f:f.write('\n'.join(lines))

第四章 划分函数

def batch_convert_labelme_to_yolo(json_folder, txt_folder, class_map):"""批量转换LabelMe格式JSON文件夹到YOLO TXT:param json_folder: JSON文件夹路径:param txt_folder: TXT保存路径:param class_map: 类别名映射字典(如{"person": 0})"""os.makedirs(txt_folder, exist_ok=True)json_files = [f for f in os.listdir(json_folder) if f.lower().endswith('.json')]for json_file in tqdm(json_files, desc="转换中"):json_path = os.path.join(json_folder, json_file)labelme_json_to_yolo(txt_folder, json_path, class_map)print(f"批量转换完成!共处理{len(json_files)}个JSON文件,保存到:{txt_folder}")

第五章 确认文件夹是否存在

def mkdir(path):if not os.path.exists(path):os.makedirs(path)

第六章主函数

def main(image_dir, txt_dir, save_dir):# 创建文件夹mkdir(save_dir)images_dir = os.path.join(save_dir, 'images')labels_dir = os.path.join(save_dir, 'labels')img_train_path = os.path.join(images_dir, 'train')img_test_path = os.path.join(images_dir, 'test')img_val_path = os.path.join(images_dir, 'val')label_train_path = os.path.join(labels_dir, 'train')label_test_path = os.path.join(labels_dir, 'test')label_val_path = os.path.join(labels_dir, 'val')mkdir(images_dir)mkdir(labels_dir)mkdir(img_train_path)mkdir(img_test_path)mkdir(img_val_path)mkdir(label_train_path)mkdir(label_test_path)mkdir(label_val_path)# 数据集划分比例,训练集80%,验证集10%,测试集10%,按需修改train_percent = 0.8val_percent = 0.1test_percent = 0.1total_txt = os.listdir(txt_dir)num_txt = len(total_txt)list_all_txt = range(num_txt)  # 范围 range(0, num)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# 在全部数据集中取出trainval_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = os.path.join(image_dir, name + '.jpg')srcLabel = os.path.join(txt_dir, name + '.txt')if i in train:dst_train_Image = os.path.join(img_train_path, name + '.jpg')dst_train_Label = os.path.join(label_train_path, name + '.txt')shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)elif i in val:dst_val_Image = os.path.join(img_val_path, name + '.jpg')dst_val_Label = os.path.join(label_val_path, name + '.txt')shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)else:dst_test_Image = os.path.join(img_test_path, name + '.jpg')dst_test_Label = os.path.join(label_test_path, name + '.txt')shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)

 第七章 主函数调用

if __name__ == "__main__":parser = argparse.ArgumentParser(description='Convert LabelMe JSON to YOLO TXT and split datasets')parser.add_argument('--json-folder', type=str, default=r'',help='LabelMe JSON folder path')parser.add_argument('--txt-folder', type=str, default=r'',help='YOLO TXT save path')parser.add_argument('--class-map', default={"自己的类别": 0}, type=dict,help='Class name mapping dictionary (e.g. {"person": 0})')parser.add_argument('--images-dir', type=str, default=r'', help='images path dir')parser.add_argument('--save-dir', default=r'', type=str, help='save dir')args = parser.parse_args()json_folder = args.json_foldertxt_folder = args.txt_folderclass_map = args.class_mapimage_dir = args.images_dirsave_dir = args.save_dir# 转换LabelMe JSON到YOLO TXTbatch_convert_labelme_to_yolo(json_folder, txt_folder, class_map)# 划分数据集main(image_dir, txt_folder, save_dir)

全部代码如下: 

import json
import os
from tqdm import tqdm  # 可选进度条库
import shutil
import random
import argparsedef labelme_json_to_yolo(txt_save_path, json_path, class_map):"""将LabelMe格式JSON转换为YOLO TXT标注文件:param txt_save_path: TXT保存路径:param json_path: LabelMe JSON文件路径:param class_map: 类别名映射字典(如{"person": 0})"""with open(json_path, 'r', encoding='utf-8') as f:data = json.load(f)img_height = data["imageHeight"]img_width = data["imageWidth"]img_name = os.path.basename(data["imagePath"])  # 提取图片文件名txt_name = os.path.splitext(img_name)[0] + ".txt"txt_path = os.path.join(txt_save_path, txt_name)lines = []for shape in data["shapes"]:label = shape["label"]if label not in class_map:continue  # 跳过未定义类别cls_id = class_map[label]# 解析多边形/矩形标注为边界框(xmin, ymin, xmax, ymax)points = shape["points"]x_coords = [p[0] for p in points]y_coords = [p[1] for p in points]xmin = min(x_coords)ymin = min(y_coords)xmax = max(x_coords)ymax = max(y_coords)# 计算YOLO格式坐标(归一化中心坐标+宽高)x_center = (xmin + xmax) / (2 * img_width)y_center = (ymin + ymax) / (2 * img_height)w = (xmax - xmin) / img_widthh = (ymax - ymin) / img_height# 过滤无效坐标(避免越界)if 0 <= x_center <= 1 and 0 <= y_center <= 1 and w > 0 and h > 0:lines.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}")# 保存TXT文件with open(txt_path, 'w') as f:f.write('\n'.join(lines))def batch_convert_labelme_to_yolo(json_folder, txt_folder, class_map):"""批量转换LabelMe格式JSON文件夹到YOLO TXT:param json_folder: JSON文件夹路径:param txt_folder: TXT保存路径:param class_map: 类别名映射字典(如{"person": 0})"""os.makedirs(txt_folder, exist_ok=True)json_files = [f for f in os.listdir(json_folder) if f.lower().endswith('.json')]for json_file in tqdm(json_files, desc="转换中"):json_path = os.path.join(json_folder, json_file)labelme_json_to_yolo(txt_folder, json_path, class_map)print(f"批量转换完成!共处理{len(json_files)}个JSON文件,保存到:{txt_folder}")# 检查文件夹是否存在
def mkdir(path):if not os.path.exists(path):os.makedirs(path)def main(image_dir, txt_dir, save_dir):# 创建文件夹mkdir(save_dir)images_dir = os.path.join(save_dir, 'images')labels_dir = os.path.join(save_dir, 'labels')img_train_path = os.path.join(images_dir, 'train')img_test_path = os.path.join(images_dir, 'test')img_val_path = os.path.join(images_dir, 'val')label_train_path = os.path.join(labels_dir, 'train')label_test_path = os.path.join(labels_dir, 'test')label_val_path = os.path.join(labels_dir, 'val')mkdir(images_dir)mkdir(labels_dir)mkdir(img_train_path)mkdir(img_test_path)mkdir(img_val_path)mkdir(label_train_path)mkdir(label_test_path)mkdir(label_val_path)# 数据集划分比例,训练集80%,验证集10%,测试集10%,按需修改train_percent = 0.8val_percent = 0.1test_percent = 0.1total_txt = os.listdir(txt_dir)num_txt = len(total_txt)list_all_txt = range(num_txt)  # 范围 range(0, num)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# 在全部数据集中取出trainval_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = os.path.join(image_dir, name + '.jpg')srcLabel = os.path.join(txt_dir, name + '.txt')if i in train:dst_train_Image = os.path.join(img_train_path, name + '.jpg')dst_train_Label = os.path.join(label_train_path, name + '.txt')shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)elif i in val:dst_val_Image = os.path.join(img_val_path, name + '.jpg')dst_val_Label = os.path.join(label_val_path, name + '.txt')shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)else:dst_test_Image = os.path.join(img_test_path, name + '.jpg')dst_test_Label = os.path.join(label_test_path, name + '.txt')shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)if __name__ == "__main__":parser = argparse.ArgumentParser(description='Convert LabelMe JSON to YOLO TXT and split datasets')parser.add_argument('--json-folder', type=str, default=r'',help='LabelMe JSON folder path')parser.add_argument('--txt-folder', type=str, default=r'',help='YOLO TXT save path')parser.add_argument('--class-map', default={"自己的类别": 0}, type=dict,help='Class name mapping dictionary (e.g. {"person": 0})')parser.add_argument('--images-dir', type=str, default=r'', help='images path dir')parser.add_argument('--save-dir', default=r'', type=str, help='save dir')args = parser.parse_args()json_folder = args.json_foldertxt_folder = args.txt_folderclass_map = args.class_mapimage_dir = args.images_dirsave_dir = args.save_dir# 转换LabelMe JSON到YOLO TXTbatch_convert_labelme_to_yolo(json_folder, txt_folder, class_map)# 划分数据集main(image_dir, txt_folder, save_dir)


文章转载自:

http://tDPnAPvU.mkydt.cn
http://eNLxQFbm.mkydt.cn
http://9o1U8NfB.mkydt.cn
http://4S3QZVhn.mkydt.cn
http://vi5mx0XQ.mkydt.cn
http://G38Xb4Co.mkydt.cn
http://AkmRSyVE.mkydt.cn
http://zbWU4Rj1.mkydt.cn
http://VVk3bfqR.mkydt.cn
http://DJgVqe2s.mkydt.cn
http://J541WQHU.mkydt.cn
http://zUg8eH71.mkydt.cn
http://7hoZ3jyw.mkydt.cn
http://OCL9O7aC.mkydt.cn
http://H9DRGGzQ.mkydt.cn
http://7nbrd8h9.mkydt.cn
http://meesylIH.mkydt.cn
http://3yhvA3mI.mkydt.cn
http://WWpB1bwW.mkydt.cn
http://G06Vwmjs.mkydt.cn
http://xRIoceuc.mkydt.cn
http://FLYzCwat.mkydt.cn
http://0OvN4Ugl.mkydt.cn
http://rznPQnLB.mkydt.cn
http://Oa0KRafv.mkydt.cn
http://nUxVZpjM.mkydt.cn
http://MUW5BIgR.mkydt.cn
http://B72Aa5jj.mkydt.cn
http://f1WJcb2f.mkydt.cn
http://MUdgIPaR.mkydt.cn
http://www.dtcms.com/wzjs/740934.html

相关文章:

  • 腾讯网站开发规范微信插件大全下载
  • 云南政务网站建设我们做网站 出教材 办育心经
  • 自己电脑做网站专业做网站公司怎么样
  • 哪个网站做农产品千海网站建设 小程序
  • 手机网站建设行业现状app下载安装app
  • 网页设计网站名字wordpress翻译公司网站
  • 贵阳网站优化公司世界500强企业是什么意思
  • 公司做网站有意义么平安区wap网站建设公司
  • 网站建设 齐鲁软件园苏州h5网站建设价钱
  • 湖南手机版建站系统信息点击即玩的小游戏网站
  • 注册网站后邮箱收到邮件wordpress文章查看次数
  • 网站虚拟空间购买开发新闻类网站
  • 网站响应式和非响应式wordpress熊掌号资源提交
  • win7 asp.net网站架设百度搜索引擎怎么做
  • 网站建设教程试题长沙公共资源交易电子服务平台
  • 江苏网站推广公司哪家好进销存软件
  • 什么云的网站开发平台dux5.0 WordPress
  • 微信微网站开发报价石家庄网站建设就找企行家
  • 校园官方网站建设的书籍现在公众号做电影网站的发展
  • 国家城乡建设官方网站做任务挣钱网站
  • 微网站免费建站系统网络设置网址
  • 网站关键字优化网页制作ppt教学课件
  • 深圳宝安区住房和建设局网站官网物流网站大全
  • 做自己的首席安全官的网站海南跨境免税电商入驻流程
  • 网站加速器怎么开做死活题网站
  • 虚拟空间做网站网站地图类型
  • 柯桥区交通投资建设集团网站中介网站开发
  • wordpress图片优化唐山百度搜索排名优化
  • 网站seo 教程规模以上工业企业划分标准
  • 做电气设计有哪些好的网站推广普通话奋进新征程手抄报