当前位置: 首页 > wzjs >正文

中国建设银行 英文网站企业门户网站中国燃气

中国建设银行 英文网站,企业门户网站中国燃气,网站推广句子,室内设计作品集案例赏析要深入浅出地理解条件概率与贝叶斯定理,可以从以下几个方面入手,结合理论知识和实例进行学习: 贝叶斯定理与智能世界的暗语 条件概率,全概率公式与贝叶斯公式的推导,理解和应用 拉普拉斯平滑 贝叶斯解决垃圾邮件分类 …

要深入浅出地理解条件概率与贝叶斯定理,可以从以下几个方面入手,结合理论知识和实例进行学习:
贝叶斯定理与智能世界的暗语
条件概率,全概率公式与贝叶斯公式的推导,理解和应用
拉普拉斯平滑

贝叶斯解决垃圾邮件分类
贝噎死
被噎死
https://metaso.cn/s/hUUemWR:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例,让我深入浅出的理解条件概率与贝叶斯定理

一、基础知识

1. 条件概率

条件概率是指在已知某个事件发生的情况下,另一个事件发生的概率。用数学公式表示为:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( A ∩ B ) P(A \cap B) P(AB)是事件 A A A和事件 B B B同时发生的联合概率。
- P ( B ) P(B) P(B)是事件 B B B发生的概率。

条件概率的核心思想是通过已知信息更新对事件发生可能性的判断。例如,如果一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球,求第二次取出红球的概率。这个问题可以通过条件概率来解决。

2. 全概率公式

全概率公式用于将复杂的事件分解为多个简单事件的概率之和。公式如下:
P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

其中:
- P ( A ) P(A) P(A)是事件 A A A发生的总概率。
- P ( A ∣ B i ) P(A|B_i) P(ABi)是在事件 B i B_i Bi发生的条件下,事件 A A A发生的概率。
- P ( B i ) P(B_i) P(Bi)是事件 B i B_i Bi发生的概率。

全概率公式在实际问题中非常有用,比如在医学诊断中,根据患者的症状和不同疾病的概率来计算患病的可能性。

3. 贝叶斯定理

贝叶斯定理是条件概率的一种推广,用于计算后验概率。公式如下:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是后验概率,即在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( B ∣ A ) P(B|A) P(BA)是似然概率,即在事件 A A A发生的条件下,事件 B B B发生的概率。
- P ( A ) P(A) P(A)是先验概率,即事件 A A A发生的初始概率。
- P ( B ) P(B) P(B)是边缘概率,即事件 B B B发生的总概率。

贝叶斯定理的核心在于利用已知信息(先验概率)和新证据(似然概率)来更新对事件发生可能性的判断。例如,在文本分类中,根据已知的词频分布和文档类别,可以预测某段文本属于某一类别的概率。

二、实例分析

1. 条件概率实例

假设一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球。求第二次取出红球的概率。

解:

  • 第一次取出红球的概率为 P ( 红 ) = 3 5 P(\text{红}) = \frac{3}{5} P()=53,取出蓝球的概率为 P ( 蓝 ) = 2 5 P(\text{蓝}) = \frac{2}{5} P()=52
  • 在第一次取出红球的条件下,第二次取出红球的概率为 P ( 红 ∣ 红 ) = 3 5 P(\text{红}|\text{红}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。
  • 在第一次取出蓝球的条件下,第二次取出红球的概率为 P ( 红 ∣ 蓝 ) = 3 5 P(\text{红}|\text{蓝}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。

根据全概率公式:
P ( 第二次红 ) = P ( 红 ∣ 红 ) P ( 红 ) + P ( 红 ∣ 蓝 ) P ( 蓝 ) = 3 5 × 3 5 + 3 5 × 2 5 = 9 25 + 6 25 = 15 25 = 0.6 P(\text{第二次红}) = P(\text{红}|\text{红})P(\text{红}) + P(\text{红}|\text{蓝})P(\text{蓝}) = \frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} = \frac{9}{25} + \frac{6}{25} = \frac{15}{25} = 0.6 P(第二次红)=P()P()+P()P()=53×53+53×52=259+256=2515=0.6

2. 贝叶斯定理实例

假设某病的患病率为1%,即 P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01,某检测方法的准确率为90%,即 P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9,假阳性率为5%,即 P ( 阳性 ∣ 无病 ) = 0.05 P(\text{阳性}|\text{无病}) = 0.05 P(阳性无病)=0.05。求某人检测结果为阳性时,实际患病的概率。

解:

  • 先验概率: P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01
  • 似然概率: P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9
  • 边缘概率: P ( 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) + P ( 阳性 ∣ 无病 ) P ( 无病 ) = 0.9 × 0.01 + 0.05 × 0.99 = 0.009 + 0.0495 = 0.0585 P(\text{阳性}) = P(\text{阳性}|\text{病})P(\text{病}) + P(\text{阳性}|\text{无病})P(\text{无病}) = 0.9 \times 0.01 + 0.05 \times 0.99 = 0.009 + 0.0495 = 0.0585 P(阳性)=P(阳性)P()+P(阳性无病)P(无病)=0.9×0.01+0.05×0.99=0.009+0.0495=0.0585

根据贝叶斯定理:
P ( 病 ∣ 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) P ( 阳性 ) = 0.9 × 0.01 0.0585 = 0.1538 P(\text{病}|\text{阳性}) = \frac{P(\text{阳性}|\text{病})P(\text{病})}{P(\text{阳性})} = \frac{0.9 \times 0.01}{0.0585} = 0.1538 P(阳性)=P(阳性)P(阳性)P()=0.05850.9×0.01=0.1538

因此,在检测结果为阳性的条件下,实际患病的概率约为15.38%。

三、总结与应用

通过以上实例可以看出,条件概率和贝叶斯定理在实际问题中具有广泛的应用价值。例如:

  1. 医学诊断:根据患者的症状和检测结果,计算患病的可能性。
  2. 自然语言处理:根据文本特征和语料库,预测文本的主题或情感。
  3. 机器学习:朴素贝叶斯分类器利用贝叶斯定理进行分类预测。

学习这些概念时,建议结合具体问题进行练习,并逐步深入理解其背后的数学原理和应用场景。希望这个入门级教程能帮助你更好地掌握条件概率与贝叶斯定理!


文章转载自:

http://2sRDfE5z.tdscL.cn
http://NUD8CmJX.tdscL.cn
http://SfPuLtxx.tdscL.cn
http://7rueXM2Q.tdscL.cn
http://9XsU4igd.tdscL.cn
http://fZHeSN9F.tdscL.cn
http://KrmGtzHZ.tdscL.cn
http://9EUNsILv.tdscL.cn
http://F4Du5xgp.tdscL.cn
http://KJSTn7YC.tdscL.cn
http://MYBQkEGM.tdscL.cn
http://ttuN6u6I.tdscL.cn
http://qXz1znYF.tdscL.cn
http://VKVXczAc.tdscL.cn
http://G2TbTnqG.tdscL.cn
http://x1t4EKm0.tdscL.cn
http://9n1IEvCr.tdscL.cn
http://vlu9SLD6.tdscL.cn
http://ZH0VG9DC.tdscL.cn
http://36LSEPtx.tdscL.cn
http://ChYiUHXv.tdscL.cn
http://S3CRj4aJ.tdscL.cn
http://iqwjam2w.tdscL.cn
http://GbTwDMKI.tdscL.cn
http://VdsEbPAp.tdscL.cn
http://AaEpJjpW.tdscL.cn
http://uqAlt830.tdscL.cn
http://JNR5I95w.tdscL.cn
http://zYacDdMB.tdscL.cn
http://oaCQTfMu.tdscL.cn
http://www.dtcms.com/wzjs/714081.html

相关文章:

  • 培训教育的网站怎么做目前主流网站建设软件
  • 做旅游网站的方法济宁网站设计
  • 江苏连云港网站制作公司wordpress对接七牛云
  • 响应式网站 站长平台字幕组 主页 wordpress
  • 定制网站开发公司企业网站安全建设方案
  • 企业品牌网站建设价格普工找工作哪个网站好
  • 免费建站平台官网网站制作流程论文
  • 成都专业网站建设机构动画制作公司排名
  • 南昌建设局网站查询塔吊证win10虚拟机做网站
  • 封面设计网站有哪些江苏建设准考证打印在哪个网站
  • 北京网站建设设计公司浩森宇特沪江博客wordpress模板
  • 专业的常州做网站如何自己做个简单网站
  • 平面素材设计网站成都装修公司前十强
  • 企业网站制作找什么人个人网站怎么建设规划和建设
  • 南京网站网站建设社区网站的作用
  • asp建站程序网站建设 河南
  • 网站首页轮播wordpress默认主题12
  • xml网站模板网站小功能
  • 个人网站如何做流量福州排名seo公司
  • 户网站建设的不全.wordpress theauthor
  • 如何做好网站建设的要点深圳中建南方建设集团网站
  • 徐州制作企业网站网站建设费账务处理
  • 建设游戏运营网站开展工作黑黑网站
  • 建设大厦网站WordPress uchome
  • 网站管理系统软件搜了网
  • 石家庄专业网站设计做公司网站软件
  • 南京的网站建设公司医生在线免费咨询
  • 惠东网站开发网站后台模板 html
  • 绍兴网站优化美食网站开发环境
  • 如何让网站被百度收入定制网络线