当前位置: 首页 > wzjs >正文

西安SEO网站排名找人做事的网站

西安SEO网站排名,找人做事的网站,河南郑州app建设网站,什么是响应式营销型网站建设目录 🚀 端到端大语言模型微调技术 Demo 全流程详解(附完整模块说明) 🔧 一、项目结构概览 📂 二、数据准备模块(data/) 1️⃣ 数据格式推荐 2️⃣ 数据预处理流程 3️⃣ 样本构造脚本 &…

目录

🚀 端到端大语言模型微调技术 Demo 全流程详解(附完整模块说明)

🔧 一、项目结构概览

📂 二、数据准备模块(data/)

1️⃣ 数据格式推荐

2️⃣ 数据预处理流程

3️⃣ 样本构造脚本

🧠 三、模型构建模块(models/)

模型加载逻辑:

🔁 四、训练微调模块(trainer/)

1️⃣ 微调方式支持

2️⃣ 训练参数配置

3️⃣ Trainer 配置:

🧪 五、推理与验证模块(inference/)

🌐 六、Web 服务与部署模块(deploy/)

方式一:Gradio 快速搭建

方式二:FastAPI 构建 REST API

📈 七、可选增强模块

✅ 八、总结


🚀 端到端大语言模型微调技术 Demo 全流程详解(附完整模块说明)

随着大语言模型(LLM)的迅猛发展,如 LLaMA、Baichuan、Qwen、ChatGLM 等模型正逐步应用于各类垂直行业和业务场景。为了更好地理解和掌握 LLM 微调的完整流程,本文将带你从 0 到 1 构建一个端到端大语言模型微调 Demo,覆盖从数据准备到部署推理的每一个关键环节。


🔧 一、项目结构概览

在构建一个可复现、可维护、可扩展的微调项目时,合理的目录结构至关重要。推荐如下项目框架:

llm_finetune_demo/
├── configs/                # 配置文件(模型参数、训练设置)
├── data/                   # 数据与预处理脚本
├── models/                 # 模型加载、保存逻辑
├── trainer/                # 微调主逻辑
├── inference/              # 推理脚本
├── deploy/                 # API/Web部署服务
├── scripts/                # 一键脚本
└── README.md               # 项目说明

📂 二、数据准备模块(data/)

1️⃣ 数据格式推荐

大模型微调普遍采用 SFT(Supervised Fine-tuning)方式,推荐 JSONL 格式,每行一个样本:

{"instruction": "翻译英文", "input": "Hello", "output": "你好"}

组合后的 prompt 可为:

用户:翻译英文:Hello
助手:你好

2️⃣ 数据预处理流程

  • 数据清洗:去除空样本、无效标点、过长数据

  • Tokenizer 编码:使用 HuggingFace Tokenizer,自动添加 special tokens

  • 分段/截断处理:设置最大长度 max_seq_length,处理 padding 和 attention mask

3️⃣ 样本构造脚本

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Base")def build_prompt(example):return f"用户:{example['instruction']}:{example['input']}\n助手:"def tokenize(example):prompt = build_prompt(example)return tokenizer(prompt + example["output"], truncation=True, max_length=1024)dataset = dataset.map(tokenize)

🧠 三、模型构建模块(models/)

支持常见的大模型如:

  • Qwen (通义千问)

  • Baichuan2

  • LLaMA / LLaMA2

  • ChatGLM 系列

  • Mistral / Falcon / Open LLMs

模型加载逻辑:

from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Base", trust_remote_code=True)

🔁 四、训练微调模块(trainer/)

1️⃣ 微调方式支持

微调方式描述
全参数微调修改全部权重,耗资源,效果好
LoRA插入低秩矩阵,低成本,效果优秀
QLoRA支持 INT4 量化,大模型微调利器
P-Tuning v2使用 prefix token 进行软提示引导

2️⃣ 训练参数配置

推荐使用 PEFT(https://github.com/huggingface/peft) + Transformers 框架:

from peft import get_peft_model, LoraConfiglora_config = LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"])
model = get_peft_model(model, lora_config)

3️⃣ Trainer 配置:

from transformers import Trainer, TrainingArgumentsargs = TrainingArguments(output_dir="outputs/",per_device_train_batch_size=2,num_train_epochs=3,logging_dir="./logs",gradient_accumulation_steps=8,save_steps=100,fp16=True,evaluation_strategy="steps"
)trainer = Trainer(model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset)
trainer.train()

🧪 五、推理与验证模块(inference/)

推理脚本推荐使用如下模板:

from transformers import AutoTokenizer, AutoModelForCausalLMtokenizer = AutoTokenizer.from_pretrained("outputs/")
model = AutoModelForCausalLM.from_pretrained("outputs/")prompt = "用户:翻译英文:How are you?\n助手:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

可选功能:

  • 支持 temperature、top_k、top_p、repetition_penalty 等参数配置

  • 支持 stream 生成或多轮上下文拼接


🌐 六、Web 服务与部署模块(deploy/)

方式一:Gradio 快速搭建

import gradio as grdef chat_fn(input_text):return model_chat(input_text)gr.Interface(fn=chat_fn, inputs="text", outputs="text").launch()

方式二:FastAPI 构建 REST API

from fastapi import FastAPI
from pydantic import BaseModelclass Request(BaseModel):prompt: str@app.post("/generate")
def generate_text(req: Request):result = model_chat(req.prompt)return {"response": result}

📈 七、可选增强模块

模块功能
WandB/TensorBoard训练过程可视化
模型量化使用 bitsandbytes 实现 INT8 / INT4 推理加速
多卡并行支持 FSDP、Deepspeed、Accelerate 等分布式微调
Chat 记忆模块多轮对话上下文拼接与管理
权重上传上传至 HuggingFace Hub,便于分享与部署

✅ 八、总结

一个真正“端到端”的大语言模型微调 Demo,绝不仅是几行微调代码,而是涵盖了从数据清洗 → Prompt 构造 → 模型设计 → 微调策略 → 推理与部署的一套完整技术流程。在当前多模型融合、多场景迁移的趋势下,掌握一套结构清晰、模块合理的微调 Demo 框架,将大大提升你在大模型时代的工程与研究效率。


📌 下一步计划:

  • 实战演示:如何用 LoRA 微调一个 Qwen-7B 成为行业助手?

  • 如何部署微调后的模型到企业内网?

  • 基于 OpenPrompt 实现 prompt tuning?

如果你希望获取完整代码框架和示例数据,可以留言或者私信交流。

http://www.dtcms.com/wzjs/712533.html

相关文章:

  • 泗洪县建设局网站如何拥有自己的专属域名
  • 网站存储空间大小怎么做搜索网站
  • 做谱的网站我的网站wordpress
  • 如何做免费的网站罗源网站建设
  • 河北常见网站建设价格wordpress投稿管理系统
  • 刘涛做的儿童购物网站网络营销专业是学什么的
  • 宣传网站建设的意义图片扫一扫在线识别照片
  • 合肥网站搭建wordpress cdn 谷歌
  • 挖矿网站开发做金融的看哪些网站
  • 北京网站开发建设网络平台建设授权书
  • 铜陵做网站东莞优化公司首选3火星
  • 免费个人网站建站申请流程网站注册备案之后怎么做
  • 用什么技术来做网站怎么设计一个app
  • 邳州建网站路由下做网站映射
  • 广州建网站兴田德润团队小程序商城哪的服务好
  • 网站域龄查询附近临时工500元一天
  • 深圳网站建设那家好深圳app开发公司价格怎么算
  • 深圳做外贸网站公司wordpress显示某一类文章
  • 免费解析素材网站小程序开发视频教程
  • 上海建筑网站建个大型网站要多少钱
  • 建筑设计网站国外网页美工设计的工作流程?
  • qq免费建网站建模培训机构排名
  • 湖州公司做网站wordpress ios 源码
  • 义乌水务建设集团官方网站做印刷网站公司哪家好
  • 注册免费微网站上海网页设计方法
  • 网站推广策划方案书做网站那些好
  • .net网站开发简介wordpress教程视频 下载
  • 互联网做网站属于什么行业莱西市建设局网站
  • 黄页网站介绍网站的扁平化设计理念
  • 那个网站做室内比较好的h5页面制作app