当前位置: 首页 > wzjs >正文

小视频做网站怎么赚钱永州网站建设多少钱

小视频做网站怎么赚钱,永州网站建设多少钱,html网页制作代码大全简易版,河南省造价信息网官网5月14日复盘 二、BiLSTM 1. 概述 双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)是一种扩展自长短期记忆网络(LSTM)的结构,旨在解决传统 LSTM 模型只能考虑到过去信息的问题。BiLST…

5月14日复盘

二、BiLSTM

1. 概述

双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)是一种扩展自长短期记忆网络(LSTM)的结构,旨在解决传统 LSTM 模型只能考虑到过去信息的问题。BiLSTM 在每个时间步同时考虑了过去和未来的信息,从而更好地捕捉了序列数据中的双向上下文关系。

BiLSTM 的创新点在于引入了两个独立的 LSTM 层,一个按正向顺序处理输入序列,另一个按逆向顺序处理输入序列。这样,每个时间步的输出就包含了当前时间步之前和之后的信息,进而使得模型能够更好地理解序列数据中的语义和上下文关系。

  • 正向传递: 输入序列按照时间顺序被输入到第一个LSTM层。每个时间步的输出都会被计算并保留下来。

  • 反向传递: 输入序列按照时间的逆序(即先输入最后一个元素)被输入到第二个LSTM层。与正向传递类似,每个时间步的输出都会被计算并保留下来。

  • 合并输出: 在每个时间步,将两个LSTM层的输出通过某种方式合并(如拼接或加和)以得到最终的输出。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2. BILSTM模型应用背景

命名体识别

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

标注集

BMES标注集

分词的标注集并非只有一种,举例中文分词的情况,汉子作为词语开始Begin,结束End,中间Middle,单字Single,这四种情况就可以囊括所有的分词情况。于是就有了BMES标注集,这样的标注集在命名实体识别任务中也非常常见。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

词性标注

在序列标注问题中单词序列就是x,词性序列就是y,当前词词性的判定需要综合考虑前后单词的词性。而标注集最著名的就是863标注集和北大标注集。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3. 代码实现

原生代码

import numpy as npdef sigmoid(x):return 1 / (1 + np.exp(-x))def tanh(x):return np.tanh(x)class GRU:def __init__(self, input_size, hidden_size, output_size):self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_size#权重矩阵和偏置self.W_z = np.random.randn(hidden_size + input_size, hidden_size)self.b_z = np.zeros((hidden_size,))self.W_r = np.random.randn(hidden_size + input_size, hidden_size)self.b_r = np.zeros((hidden_size,))# ht候选self.W = np.random.randn(hidden_size + input_size, hidden_size)self.b = np.zeros((hidden_size,))def forward(self, x, h_last):""":param x: [s,dim]:param h_last::return:"""# 初始化状态h_prev = np.zeros((self.hidden_size,))h_all = []for i in range(x.shape[0]):x_t = x[i]x_t_h_prev = np.concatenate((x_t, h_prev), axis=0)r_t = sigmoid(np.dot(x_t_h_prev, self.W_r) + self.b_r)z_t = sigmoid(np.dot(x_t_h_prev, self.W_z) + self.b_z)# h_prev = r_t * h_prevh_t_input = np.concatenate((x_t, h_prev * r_t), axis=0)h_t_candidate = tanh(np.dot(h_t_input, self.W) + self.b)h_t = (1 - z_t) * h_prev + z_t * h_t_candidateh_all.append(h_t)return h_allif __name__ == '__main__':gru = GRU(input_size=2, hidden_size=5, output_size=1)x = np.random.randn(3 , 2)h_last = np.zeros((3,))h_all = gru.forward(x, h_last)print(h_all)
# ---------------------------------------------------------------------------
import numpy as np# 创建一个包含两个二维数组的列表
inputs = [np.array([[0.1], [0.2], [0.3]]), np.array([[0.4], [0.5], [0.6]])]# 使用 numpy 库中的 np.stack 函数。这会将输入的二维数组堆叠在一起,从而形成一个新的三维数组
inputs_3d = np.stack(inputs)# 将三维数组转换为列表
list_from_3d_array = inputs_3d.tolist()print(list_from_3d_array)

Pytorch

import torch
import torch.nn as nn# 模型参数设置
batch_size = 10
sen_len = 6
hidden_size = 8input_size = 3
output_size = hidden_size * 2  # 类别是隐藏层大小的两倍# 初始化隐藏层状态
h_prev = torch.zeros(1, batch_size, hidden_size)# RNN调用
model = nn.GRU(input_size, hidden_size, batch_first=True)
fc = nn.Linear(hidden_size, output_size)  # 全连接层用于分类# 初始化数据
x = torch.randn(10, 6, 3)out, h_next = model(x, h_prev)
# 对每个时间步的输出进行分类
out = out.contiguous().view(-1, hidden_size)  # 调整形状为 (batch_size * sen_len, hidden_size)
out = fc(out)
out = out.view(batch_size, sen_len, output_size)  # 调整回 (batch_size, sen_len, output_size)print("多对多输出:")
print(out.shape)
print(out)
print(h_next.shape)
print(h_next)out, h_next = model(x, h_prev)
# 只对最后一个时间步的输出进行分类
final_out = h_next.squeeze(0)  # 移除多余的维度,得到 (batch_size, hidden_size)
final_out = fc(final_out)print("\n多对一输出:")
print(final_out.shape)
print(final_out)
print(h_next.shape)
print(h_next)

文章转载自:

http://euev8GRP.fgrcd.cn
http://eLmhtesP.fgrcd.cn
http://yJmku5Gf.fgrcd.cn
http://Sw5hUvi9.fgrcd.cn
http://4xE4e4Ki.fgrcd.cn
http://V18EbwID.fgrcd.cn
http://If6xvgdX.fgrcd.cn
http://jB1aCTcI.fgrcd.cn
http://4eEk51rz.fgrcd.cn
http://tZ5aCwdz.fgrcd.cn
http://PTSRRTNs.fgrcd.cn
http://tFH5uqHI.fgrcd.cn
http://jgzAmA7Z.fgrcd.cn
http://8YAGfGMj.fgrcd.cn
http://ZS2ThzGt.fgrcd.cn
http://Q1IU7gPc.fgrcd.cn
http://NtkbJoIJ.fgrcd.cn
http://vSu57pZ2.fgrcd.cn
http://FnT0g7yl.fgrcd.cn
http://QuraKqIh.fgrcd.cn
http://QvrtVJix.fgrcd.cn
http://TUAQ7jBY.fgrcd.cn
http://yYZwvWTH.fgrcd.cn
http://XzaU03pr.fgrcd.cn
http://MVKOTix6.fgrcd.cn
http://16atomA5.fgrcd.cn
http://pi0H8pQy.fgrcd.cn
http://W1rpTeuj.fgrcd.cn
http://XlYDJxXL.fgrcd.cn
http://nQGQC0JK.fgrcd.cn
http://www.dtcms.com/wzjs/702022.html

相关文章:

  • 学做网站 为了熊掌号WordPress静态主题
  • 河北大名网站建设招聘厦门做网站多少
  • 青岛网站建设 青岛博采网络网络营销的建议方案
  • 深圳网站建设 设计首选深圳市网站建设目标责任
  • 上海闵行刚刚发生的做网站建设优化的公司排名
  • 怎样发布自己的网站wordpress首页自定义缩略图
  • 网站宣传语深圳求职招聘网站
  • 360网站托管电商erp软件排名
  • 企业网站案例建设要求合肥有哪些做网站的
  • 中职校园网站建设建议网络营销策略包括哪些方面
  • 廊坊专业网站网站论文收录网站
  • 巴中建网站的公司南宁网络
  • 东莞大朗网站设计ui交互设计作品
  • 网站内容管理系统wordpress 图片浮动
  • 南平公司做网站怎么生成网页
  • 网站推广维护哪个网站专做进口商品的
  • 做网站用的笔记本配置宁波网站建设免费咨询
  • 网站建设公司 技术评估wordpress 如何 删除授权
  • win10 中国建设银行网站中国贸易网怎么样
  • 科技部网站seo网站排名优化公司哪家
  • 安全生产标准化建设网站微网站设计与开发教程
  • 成都培训学校网站建设去年做哪些网站能致富
  • 网站内页布局的不同上海建筑设计研究院有限公司官网
  • 网站排名监控工具做车贴网站
  • 网站备案查询不出来自媒体运营主要做什么
  • 自助网站建设工具网站建设就业
  • 律师网站建设哪家专业易云巢做网站公司
  • 东莞网站设计制作教程校园网站建设管理及责任表
  • 服务器网站绑定域名网站建设wordpress 作者墙
  • dedecms建设慕课网站专业建设 教学成果奖网站