当前位置: 首页 > wzjs >正文

网站建站工具有哪些广州黄埔建网站

网站建站工具有哪些,广州黄埔建网站,专业医疗建站,wordpress 邮箱登录1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别、关系抽取和属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。 2.下载对应的de…

1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别关系抽取属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。

2.下载对应的demo代码

3.准备环境

conda create -n deepke-llm python=3.9
conda activate deepke-llmcd example/llm
pip install -r requirements.txtpip install ujson

 4.demo目录介绍

我们直接运行demo.py,就会出现三个选项,每个选项对应一个文件夹

NER(命名实体识别)- 选项1:
基础模型:bert-base-chinese
任务模型:需要从 DeepKE 下载预训练的 NER 模型
位置:neme_entity_recognition/checkpoints/
RE(关系抽取)- 选项2:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 RE 模型
位置:relation_extraction/checkpoints/
AE(属性抽取)- 选项3:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 AE 模型(lm_epoch1.pth)
位置:attributation_extraction/checkpoints/

5.我们先下载本地模型,我直接在本地下载模型

 git clone https://www.modelscope.cn/tiansz/bert-base-chinese.git

修改选项2和选项3中对应的模型的路径为本地路径

 关系抽取的

属性抽取的

 

6.然后去官网下载预训练模型

我发现属性抽取没有提供预训练模型

但是其余两个有,下载地址如下https://drive.google.com/drive/folders/1wb_QIZduKDwrHeri0s5byibsSQrrJTEv

(https://github.com/zjunlp/DeepKE/blob/main/README_CNSCHEMA_CN.md)

7.将下载好的re和ner对应的文件放到对应的位置

1)re

修改relation_extraction中的demo.py的路径和tokenizer,完整代码如下

import os
import numpy as np
import torch
import random
import pickle
from tqdm import tqdm
import ujson as json
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModel, AutoTokenizer
import time
from .process import *def to_official(preds, features):rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))rel2info = json.load(open(f'relation_extraction/data/rel_info.json', 'r'))entity = json.load(open(f'relation_extraction/data/output.json', 'r'))id2rel = {value: key for key, value in rel2id.items()}h_idx, t_idx, title = [], [], []for f in features:hts = f["hts"]h_idx += [ht[0] for ht in hts]t_idx += [ht[1] for ht in hts]title += [f["title"] for ht in hts]res = []for i in range(preds.shape[0]):pred = preds[i]pred = np.nonzero(pred)[0].tolist()for p in pred:if p != 0:h_entity, t_entity = '', ''for en in entity[0]['vertexSet'][h_idx[i]]:if len(en['name']) > len(h_entity):h_entity = en['name']for en in entity[0]['vertexSet'][t_idx[i]]:if len(en['name']) > len(t_entity):t_entity = en['name']res.append({'h': h_entity,'t': t_entity,'r': rel2info[id2rel[p]],})return resclass ReadDataset:def __init__(self, tokenizer, max_seq_Length: int = 1024,transformers: str = 'bert') -> None:self.transformers = transformersself.tokenizer = tokenizerself.max_seq_Length = max_seq_Lengthdef read(self, file_in: str):save_file = file_in.split('.json')[0] + '_' + self.transformers + '.pkl'return read_docred(self.transformers, file_in, save_file, self.tokenizer, self.max_seq_Length)def read_docred(transfermers, file_in, save_file, tokenizer, max_seq_length=1024):max_len = 0up512_num = 0i_line = 0pos_samples = 0neg_samples = 0features = []docred_rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))if file_in == "":return Nonewith open(file_in, "r") as fh:data = json.load(fh)if transfermers == 'albert':entity_type = ["-", "ORG", "-",  "LOC", "-",  "TIME", "-",  "PER", "-", "MISC", "-", "NUM"]for sample in data:sents = []sent_map = []entities = sample['vertexSet']entity_start, entity_end = [], []mention_types = []for entity in entities:for mention in entity:sent_id = mention["sent_id"]pos = mention["pos"]entity_start.append((sent_id, pos[0]))entity_end.append((sent_id, pos[1] - 1))mention_types.append(mention['type'])for i_s, sent in enumerate(sample['sents']):new_map = {}for i_t, token in enumerate(sent):tokens_wordpiece = tokenizer.tokenize(token)if (i_s, i_t) in entity_start:t = entity_start.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type)special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = special_token + tokens_wordpieceif (i_s, i_t) in entity_end:t = entity_end.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type) + 50special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = tokens_wordpiece + special_tokennew_map[i_t] = len(sents)sents.extend(tokens_wordpiece)new_map[i_t + 1] = len(sents)sent_map.append(new_map)if len(sents)>max_len:max_len=len(sents)if len(sents)>512:up512_num += 1train_triple = {}if "labels" in sample:for label in sample['labels']:evidence = label['evidence']r = int(docred_rel2id[label['r']])if (label['h'], label['t']) not in train_triple:train_triple[(label['h'], label['t'])] = [{'relation': r, 'evidence': evidence}]else:train_triple[(label['h'], label['t'])].append({'relation': r, 'evidence': evidence})entity_pos = []for e in entities:entity_pos.append([])mention_num = len(e)for m in e:start = sent_map[m["sent_id"]][m["pos"][0]]end = sent_map[m["sent_id"]][m["pos"][1]]entity_pos[-1].append((start, end,))relations, hts = [], []# Get positive samples from datasetfor h, t in train_triple.keys():relation = [0] * len(docred_rel2id)for mention in train_triple[h, t]:relation[mention["relation"]] = 1evidence = mention["evidence"]relations.append(relation)hts.append([h, t])pos_samples += 1# Get negative samples from datasetfor h in range(len(entities)):for t in range(len(entities)):if h != t and [h, t] not in hts:relation = [1] + [0] * (len(docred_rel2id) - 1)relations.append(relation)hts.append([h, t])neg_samples += 1assert len(relations) == len(entities) * (len(entities) - 1)if len(hts)==0:print(len(sent))sents = sents[:max_seq_length - 2]input_ids = tokenizer.convert_tokens_to_ids(sents)input_ids = tokenizer.build_inputs_with_special_tokens(input_ids)i_line += 1feature = {'input_ids': input_ids,'entity_pos': entity_pos,'labels': relations,'hts': hts,'title': sample['title'],}features.append(feature)with open(file=save_file, mode='wb') as fw:pickle.dump(features, fw)return featuresdef collate_fn(batch):max_len = max([len(f["input_ids"]) for f in batch])input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]input_ids = torch.tensor(input_ids, dtype=torch.long)input_mask = torch.tensor(input_mask, dtype=torch.float)entity_pos = [f["entity_pos"] for f in batch]labels = [f["labels"] for f in batch]hts = [f["hts"] for f in batch]output = (input_ids, input_mask, labels, entity_pos, hts )return outputdef report(args, model, features):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)preds = []for batch in dataloader:model.eval()inputs = {'input_ids': batch[0].to(device),'attention_mask': batch[1].to(device),'entity_pos': batch[3],'hts': batch[4],}with torch.no_grad():pred = model(**inputs)pred = pred.cpu().numpy()pred[np.isnan(pred)] = 0preds.append(pred)preds = np.concatenate(preds, axis=0).astype(np.float32)preds = to_official(preds, features)return predsclass Config(object):unet_in_dim=3unet_out_dim=256max_height=42down_dim=256channel_type='context-based'unet_out_dim=256test_batch_size=2cfg = Config()def color(text, color="\033[1;34m"): return color+text+"\033[0m"def doc_re():sentence = input(f"Enter the {color('sentence')}: ")input_file = 'relation_extraction/input.txt'with open(input_file , 'w') as f:f.write(sentence)txt2json(input_file, 'relation_extraction/data/output.json')device = torch.device("cpu")bert_path = '/mnt/workspace/DeepKE-demo/bert-base-chinese'config = AutoConfig.from_pretrained(bert_path, num_labels=97)tokenizer = AutoTokenizer.from_pretrained(bert_path)Dataset = ReadDataset(tokenizer, 1024, transformers='bert')test_file = 'relation_extraction/data/output.json'test_features = Dataset.read(test_file)model = AutoModel.from_pretrained(bert_path, from_tf=False, config=config)config.cls_token_id = tokenizer.cls_token_idconfig.sep_token_id = tokenizer.sep_token_idconfig.transformer_type = 'bert'seed = 111random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)if torch.cuda.is_available():torch.cuda.manual_seed_all(seed)model = DocREModel(config, cfg, model, num_labels=4)checkpoint_path = 'relation_extraction/checkpoints/re_bert.pth'if not os.path.exists(checkpoint_path):raise FileNotFoundError(f"预训练模型文件不存在:{checkpoint_path},请确保已下载模型文件并放置在正确位置。")# 加载预训练权重# model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))# 加载预训练权重并处理键名不匹配state_dict = torch.load(checkpoint_path, map_location='cpu')new_state_dict = {}for k, v in state_dict.items():if k.startswith('bert.'):new_k = 'bert_model.' + k[5:]  # 将 'bert.' 替换为 'bert_model.'new_state_dict[new_k] = velse:new_state_dict[k] = v# 加载可以加载的权重model_dict = model.state_dict()pretrained_dict = {k: v for k, v in new_state_dict.items() if k in model_dict}model_dict.update(pretrained_dict)model.load_state_dict(model_dict, strict=False)model.to(device)pred = report(cfg, model, test_features)with open(input_file.split('.txt')[0]+'.json', "w") as fh:json.dump(pred, fh)print()print(f"The {color('triplets')} are as follow:")print()for i in pred:print(i)print()if __name__ == "__main__":doc_re()

同时修改/mnt/workspace/DeepKE-demo/relation_extraction/process/model.py

def encode(self, input_ids, attention_mask,entity_pos):config = self.configif config.transformer_type == "albert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "bert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "roberta":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id, config.sep_token_id]sequence_output, attention = process_long_input(self.bert_model, input_ids, attention_mask, start_tokens, end_tokens)return sequence_output, attention

测试句子有格式要求:{[0][PER]欧阳菲菲}演唱的{[1][SONG]没有你的夜晚},出自专辑{[2][ALBUM]拥抱}

最后结果

2)ner

将下载好的checkpoint_bert.zip移动到ner文件夹下并解压缩,然后运行,记得重命名为checkpointints

运行报错,标签老是对不上,重新训练

/mnt/workspace/DeepKE/example/ner/standard路径下

下载数据集

wget 120.27.214.45/Data/ner/standard/data.tar.gztar -xzvf data.tar.gz

然后修改配置,改为自己的路径名

/mnt/workspace/DeepKE/example/ner/standard/conf/hydra/model/bert.yaml

安装环境依赖(重新建一个conda环境吧,训练不等同于推理)conda create -n deepke python=3.8conda activate deepkepip install pip==24.0
在DeepKE源码根目录下(git clone https://github.com/zjunlp/DeepKE.git)
pip install --use-pep517 seqeval
pip install -r requirements.txtpython setup.py installpython setup.py develop
pip install safetensors

/mnt/workspace/DeepKE/example/ner/standard路径下

运行python run_bert.py 

如果用gpu训练的话,需要

pip uninstall torch torchvision torchaudio -ypip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

24g显存,使用率是70%,训练了两个小时左右

but,效果并不好


文章转载自:

http://xGdVLbl4.mdpLm.cn
http://nTeDYrVa.mdpLm.cn
http://C760m4vW.mdpLm.cn
http://Lx7hEcaG.mdpLm.cn
http://7NYWxHZs.mdpLm.cn
http://MjtxQhKj.mdpLm.cn
http://yPC6NCiD.mdpLm.cn
http://xkW77fDa.mdpLm.cn
http://Suc1TSWK.mdpLm.cn
http://1ovK02VS.mdpLm.cn
http://QnoprGHe.mdpLm.cn
http://obFYEyfZ.mdpLm.cn
http://p2v4jdqu.mdpLm.cn
http://tFuvemdc.mdpLm.cn
http://OfmMQ7PK.mdpLm.cn
http://6f7TNK6D.mdpLm.cn
http://KqZbaA3v.mdpLm.cn
http://w4k5cxBD.mdpLm.cn
http://BtmLbA56.mdpLm.cn
http://sehSjYoX.mdpLm.cn
http://laIAEZ0w.mdpLm.cn
http://RFPrXpBn.mdpLm.cn
http://lhDsoRoS.mdpLm.cn
http://bGjHp2i6.mdpLm.cn
http://4lowUMH9.mdpLm.cn
http://MOoAfmBt.mdpLm.cn
http://GZBdtP7O.mdpLm.cn
http://7PmpFoYR.mdpLm.cn
http://hIe6DE76.mdpLm.cn
http://g7MGNuyc.mdpLm.cn
http://www.dtcms.com/wzjs/701682.html

相关文章:

  • 安平县哪家做网站连云港 网站设计
  • 百度口碑苏州关键词优化企业
  • 腾讯云主机做网站上海平台网站建设公司
  • 域名和网站一样吗网站站点创建成功是什么意思
  • 合作网站制作微博营销的技巧有哪些
  • 婚介 东莞网站建设个体工商户 网站建设
  • 长沙网站优化步骤成都官网seo技术
  • 网站开发程序设计工程竣工验收公示网
  • 家庭宽带做私人网站找建站公司做网站注意事项
  • 郴州网站建设郴州贵阳seo网站推广优化
  • 成都网站建设方法数码京东seo搜索优化
  • 网站首页制作模板厦门网站建设制作工具
  • 蒙古文网站建设汇报材料爱心助学网站建设
  • 阜宁网站制作选哪家加强网站功能建设
  • 做微整去那个网站找好的医院软件开发人员工资标准
  • 狮岭做网站推广方案应该有哪些方面
  • 做网站分辨率多少钱2个网站 同意内容 百度优化
  • 自己建设网站不会咋办呀博爱seo排名优化培训
  • 小区网站建设电商运营团队
  • 巫山集团网站建设优化教程
  • 潍坊建网站网站的建设报价
  • 保定建站公司模板ps如何做网站轮播图
  • 外发加工网站源码下载湖南省郴州市嘉禾县
  • h5快速建站网站建设能不能使用模板
  • 大连建网站多少钱国外免费空间网站申请
  • 手工木雕网站建设策划书红安县城乡建设局网站
  • 广东网站开发公司装饰工程公司经营范围
  • dw网站站点正确建设方式关于网站建设的意义
  • 两学一做微网站交流贵州省建设厅网站查
  • 手游网站怎么做想做微商怎么找厂家