当前位置: 首页 > wzjs >正文

微网站一键导航企业网站首页设计评价

微网站一键导航,企业网站首页设计评价,成都制作网站公司哪家好,建设工程公司组织架构图神经网络原理 激活函数 引入非线性: 这是最核心、最重要的作用! 如果没有激活函数(或者使用线性激活函数f(x) x),无论神经网络有多少层,其整体计算仍然等价于一个单层的线性变换 (y Wx b)。 梯度下降…

神经网络原理

激活函数
 

引入非线性: 这是最核心、最重要的作用! 如果没有激活函数(或者使用线性激活函数f(x) = x),无论神经网络有多少层,其整体计算仍然等价于一个单层的线性变换 (y = Wx + b)。

 

梯度下降

 找到能使损失函数值最小化的模型参数

    1. 初始化: 随机选择一个起点(给模型参数赋初值)。

    2. 计算梯度: 在当前参数位置,计算损失函数关于所有参数的梯度。这个梯度告诉你“哪个方向是当前最陡的上坡”。

    3. 沿负梯度方向更新: 向负梯度方向迈出一小步(更新参数)。迈出的步长由学习率控制。

      • 新参数 = 旧参数 - 学习率 * 梯度

    4. 重复: 不断重复步骤 2 和 3,计算新位置的梯度,再次沿负梯度方向更新参数。

      核心思想: 通过迭代地计算梯度并沿着最陡下降方向(负梯度方向)调整参数,逐步逼近损失函数的最小值点。

学习率的重要性:

太大:步长过大,可能会“跨过”谷底,甚至导致损失值震荡或发散(在山谷两边来回跳)。

太小:步长过小,收敛速度极慢,可能需要非常多的步骤才能到达谷底,甚至卡在不是最低点的平坦区域(局部极小点或鞍点)。


 

损失函数 

  • 均方误差 (MSE): L = 1/N * Σ(ŷ_i - y_i)²。最常用于回归问题(预测连续值)。惩罚大的误差很重。

  • 平均绝对误差 (MAE): L = 1/N * Σ|ŷ_i - y_i|。也用于回归。对异常值比MSE更鲁棒(不那么敏感)。

  • 交叉熵损失 (Cross-Entropy Loss): 这是分类问题(尤其是多分类)的标准损失函数

    • 二分类交叉熵: L = -[y * log(ŷ) + (1 - y) * log(1 - ŷ)] (y是0或1的真实标签,ŷ是预测为1的概率)。

    • 多分类交叉熵: L = -Σ y_i * log(ŷ_i) (y_i是真实标签的one-hot编码,ŷ_i是模型预测的对应类别的概率)。它衡量预测概率分布与真实概率分布(one-hot)之间的差异。

  • Hinge Loss (合页损失): 常用于支持向量机(SVM)和某些神经网络分类任务,尤其是最大间隔分类。

优化器

它利用损失函数关于模型参数的梯度信息,决定如何调整参数以最小化损失函数

  1. 你构建一个神经网络结构(输入层、隐藏层、输出层,定义神经元和连接)。

  2. 选择一个合适的损失函数来衡量预测的好坏。

  3. 选择一个优化器(如Adam)来指导参数更新的策略。

  4. 将一批数据输入网络,进行前向传播得到预测。

  5. 计算损失

  6. 使用反向传播计算损失函数关于所有权重/偏置(参数)的梯度

  7. 优化器利用这些梯度,按照其特定的更新规则(如Adam的动量+自适应学习率)更新网络参数

  8. 重复步骤4-7。在这个过程中,参数沿着损失函数的负梯度方向逐步调整(梯度下降思想),使得损失不断减小,预测越来越准。激活函数则在每一层的神经元内部施加非线性变换,赋予网络强大的拟合能力。

from gettext import npgettext
from socket import NI_NAMEREQD
import torch
torch.cuda
if torch.cuda.is_available():print("CUDA可用")device_count = torch.cuda.device_count()print(f"CUDA设备数量: {device_count}")curent_device=torch.cuda.current_device()print(f"当前使用的CUDA设备: {curent_device}")device_name = torch.cuda.get_device_name(curent_device)print(f"当前CUDA设备名称: {device_name}"    )
else:print("CUDA不可用")from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
iris = load_iris()
X= iris.data
y= iris.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)from sklearn.preprocessing import MinMaxScaler
scaler= MinMaxScaler()
X_train = scaler,fit_transform(X_train)
X_test = scaler.transform(X_test)X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)import torch 
import torch.nn as nn
import torch.optim as optimclass MLP(nn.Module):def __init__(self):super(MLP,self).__init__()self.fc1 = nn.Linear(4,10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10,3)def forward(self,x):out= self.fc1(x)out = self.relu(out)out = self.fc2(out)return out
model = MLP()criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01)num_epochs = 20000
losses = []
for epoch in range(num_epochs):outputs = model.forward(X_train)loss= criterion(outputs,y_train)optimizer.zero_grad()loss.backward()optimizer.step()losses.append(loss.item())if (epoch+1) % 100 ==0:print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")import matplotlib.pyplot as plt
plt.plot (range{num_epochs},losses)
plt.xlabel('Epoch')
plt.ylable('Loss')
plt.title('Training Loss overe Epochs')
plt.show()

@浙大疏锦行


文章转载自:

http://Kt2dek5O.nrnLk.cn
http://B7rX8yWz.nrnLk.cn
http://UISrwgHy.nrnLk.cn
http://jisG3XgW.nrnLk.cn
http://i0UO2PBf.nrnLk.cn
http://uuaX2zI6.nrnLk.cn
http://VOPbq2tU.nrnLk.cn
http://d02cd4ut.nrnLk.cn
http://Sa9rTHH1.nrnLk.cn
http://ggQBlHha.nrnLk.cn
http://j4reMsdV.nrnLk.cn
http://WMYXBlvL.nrnLk.cn
http://qkGobfNy.nrnLk.cn
http://TL6DZBO7.nrnLk.cn
http://aOqd8gH0.nrnLk.cn
http://MzeM1hxo.nrnLk.cn
http://6YIbd3Zw.nrnLk.cn
http://B1bpKvD3.nrnLk.cn
http://Q6K4DDQT.nrnLk.cn
http://dh3DInNK.nrnLk.cn
http://Kpiu7u47.nrnLk.cn
http://D3WeS2Qm.nrnLk.cn
http://6QlwZNQs.nrnLk.cn
http://wjY2MQiR.nrnLk.cn
http://kbfWqoCz.nrnLk.cn
http://cfBdaomp.nrnLk.cn
http://ArZ6PKXI.nrnLk.cn
http://qDeqDcU5.nrnLk.cn
http://GSWrzTsS.nrnLk.cn
http://aOwJy0ei.nrnLk.cn
http://www.dtcms.com/wzjs/701072.html

相关文章:

  • 北京电商网站建设哪家好国外网站流量
  • 做网站大概多钱做网站套餐
  • 西安网站建设有那些公司做学生阅读分析的网站
  • 网站 目标怎么在搜索引擎里做网站网页
  • 建站公司费用情况酒店vi设计
  • 青岛黄岛网站建设网站如何进行seo
  • 网站建设教程金旭亮北京科技公司10强
  • 中国建设工程造价管理网站空间设计说明怎么写
  • 长沙蒲公英网站建设如何快速网络推广产品的方法
  • 网站开发的调研内容wordpress 关键词优化
  • 网站建设系统服务机构编程加盟
  • 沈阳沈河seo网站排名优化商业网站模板下载
  • 做网站公司需要准备资料淘宝搜索词排名查询
  • 做网站需要投标吗免费建各种网站
  • 做p2p网站多少钱网站框架设计
  • 公司网站是不是每天要更新福建微网站建设
  • 杭州做网站公司有哪些要给公司做一个网站怎么做的
  • 营销型建设网站公司无极县在线招聘信息
  • 搞好姓氏源流网站建设forum wordpress
  • 北京网站开发多少钱移动互联网应用技术专业学什么
  • 南海营销网站开发民营医院建设网站
  • 微网站趋势wordpress能做图片站
  • 静态网站怎么做有效页怎么做网站优化排名
  • 网站正在建设中 html 模板今天汽油价格
  • 从零做网站茂名建站模板搭建
  • 怎么做刷业务网站重庆公司名字查重系统
  • 用层还是表格做网站快杂志网站建设推广方案
  • 建设银行人才招聘官方网站微信官网免费下载安装
  • 网站建站上海山西通州集团网站建设
  • 免费注册网站哪个好泉州建设网站开发