ai绘制logo标题优化方法
题目列表
3477. 将水果放入篮子 II
3478. 选出和最大的 K 个元素
3479. 将水果装入篮子 III
3480. 删除一个冲突对后最大子数组数目
一、将水果放入篮子 II
本题由于数据范围比较小,所以我们可以暴力模拟水果的放置过程,代码如下
// C++
class Solution {
public:int numOfUnplacedFruits(vector<int>& fruits, vector<int>& baskets) {int n = fruits.size();int cnt = n;for(int x : fruits){for(int& y : baskets){if(y > 0 && x <= y){cnt--;y = -1;break;}}}return cnt;}
};
# Python
class Solution:def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:cnt = len(fruits)for x in fruits:for i, y in enumerate(baskets):if y > 0 and x <= y:baskets[i] = -1cnt -= 1breakreturn cnt
二、选出和最大的 K 个元素
在所有满足 n u m s 1 [ j ] nums1[j] nums1[j] 小于 n u m s 1 [ i ] nums1[i] nums1[i] 的下标 j j j 所对应的 n u m s 2 [ j ] nums2[j] nums2[j] 中选出最多 k k k 个数,使得这些数字之和最大。
思路如下:
- 如何快速找到小于 n u m s 1 [ j ] nums1[j] nums1[j] 小于 n u m s 1 [ i ] nums1[i] nums1[i] 的下标 j j j。我们可以对 n u m s 1 nums1 nums1 数组进行排序,那么在 n u m s 1 [ i ] nums1[i] nums1[i] 左边的数字都比它小
- 如何求 k k k 个数字的最大和,本质就是维护最大的 k k k 个 n u m s 2 [ j ] nums2[j] nums2[j],这可以用最小堆来做:堆顶的元素是 k k k 个数中的最小值,如果新加入的数字大于最小值,就加入堆中,同时丢弃最小值,否则则什么也不做,同时我们还要维护堆中元素之和
- 注意:题目要求返回的 a n s ans ans 中的 a n s [ i ] ans[i] ans[i] 要对应原始数组 n u m s 1 nums1 nums1 中的 n u m s 1 [ i ] nums1[i] nums1[i],所以我们不能对 n u m s 1 nums1 nums1 直接进行排序,我们只要通过下标对 n u m s 1 nums1 nums1 进行排序即可,具体看代码
代码如下
// C++
class Solution {
public:vector<long long> findMaxSum(vector<int>& nums1, vector<int>& nums2, int k) {int n = nums1.size();vector<int> idx(n);iota(idx.begin(), idx.end(), 0); // 给 idx 数组赋值 0,1,2,...ranges::sort(idx, {}, [&](auto x){ return nums1[x]; }); // 对下标进行排序long long sum = 0;vector<long long> ans(n);priority_queue<int, vector<int>, greater<>> pq; // 最小堆for(int i = 0, j = 0; i < n; i++){int x = idx[i]; // 注意这里的 i,j 需要通过 idx 进行映射到真正的下标while(j < i && nums1[idx[j]] < nums1[x]){ // 比 nums1[x] 小的考虑入堆 pq.push(nums2[idx[j]]);sum += nums2[idx[j]];if(pq.size() > k){sum -= pq.top();pq.pop();}j++;}ans[x] = sum;}return ans;}
};
# Python
class Solution:def findMaxSum(self, nums1: List[int], nums2: List[int], k: int) -> List[int]:n = len(nums1)idx = [0] * nfor i in range(n):idx[i] = iidx.sort(key=lambda x : nums1[x])j = sum = 0pq = []ans = [0] * nfor i in range(n):x = idx[i]while j < i and nums1[idx[j]] < nums1[x]:heappush(pq, nums2[idx[j]])sum += nums2[idx[j]]if len(pq) > k:sum -= heappop(pq)j += 1ans[x] = sumreturn ans
三、将水果放入篮子 III
和第一题同样的题目,但是数据范围变大了,不能暴力模拟了,现在的关键是如何快速的找到 b a s k e t s baskets baskets 中最左边的第一个大于等于 f r u i t s [ i ] fruits[i] fruits[i] 的数字,如何做呢?思路如下:
- 假设我们已知 [ l , r ] [l,r] [l,r] 区间的最大值 m x mx mx,那么我们就能快速的判断出 [ l , r ] [l,r] [l,r] 内是否有值 ≥ f r u i t s [ i ] \ge fruits[i] ≥fruits[i],从而决定是否进入区间去寻找
- 在 [ l , r ] [l,r] [l,r] 中,我们同样可以将区间分半成 [ l , m i d ] [l,mid] [l,mid] 和 [ m i d + 1 , r ] [mid+1,r] [mid+1,r],然后用同样的方法先去判断 [ l , m i d ] [l,mid] [l,mid] 中是否有值 ≥ f r u i t s [ i ] \ge fruits[i] ≥fruits[i],如果没有则去 [ m i d + 1 , r ] [mid+1,r] [mid+1,r] 中找
- 如此,问题的规模不断的被减半,直到 l = r l=r l=r 我们找到了一个 b a s k e t s [ l ] ≥ f r u i t s [ i ] baskets[l]\ge fruits[i] baskets[l]≥fruits[i],由于我们每次都是优先去左边查找,所以找到的 b a s k e t s [ l ] baskets[l] baskets[l] 就是 b a s k e t s baskets baskets 中最左边的第一个大于等于 f r u i t s [ i ] fruits[i] fruits[i] 的数。
- 同时,由于问题规模不断减半,所以查询的时间复杂度为 O ( l o g N ) O(logN) O(logN)
- 综上所述,我们需要维护区间最大值,同时还要查询和进行单点修改,这些都可以用线段树来实现
具体代码如下
// C++
class SegTree{
public:SegTree(int n) : t(n << 2) {}void maintain(int o){t[o] = max(t[o << 1], t[o << 1|1]);}void build(int o, int l, int r, const vector<int>& a){if(l == r){t[o] = a[l];return;}int m = l + (r - l) / 2;build(o << 1, l, m, a);build(o << 1|1, m + 1, r, a);maintain(o);}void update(int o, int l, int r, int i, int val = -1){if(l == r){t[o] = val;return;}int m = l + (r - l) / 2;if(i <= m) update(o << 1, l, m, i, val);else update(o << 1 | 1, m + 1, r, i, val);maintain(o);}int query(int o, int l, int r, int val){if(t[o] < val){return -1;}if(l == r){return l;}int m = l + (r - l) / 2;int i = query(o << 1, l, m, val);if(i < 0)i = query(o << 1 | 1, m + 1, r, val);return i;}
private:vector<int> t; // 记录最大值
};
class Solution {
public:int numOfUnplacedFruits(vector<int>& fruits, vector<int>& baskets) {int n = fruits.size(), cnt = n;SegTree t(n);t.build(1, 0, n - 1, baskets);for(int x : fruits){int i = t.query(1, 0, n - 1, x);if(i >= 0){t.update(1, 0, n - 1, i);cnt--;}}return cnt;}
};
# Python
class SegTree:def __init__(self, a:List[int]):n = len(a)self.t = [0] * (n << 2)self.build(1, 0, n - 1, a)def maintain(self, o:int):self.t[o] = max(self.t[o<<1], self.t[o<<1|1])def build(self, o:int, l:int, r:int, a:List[int]):if l == r:self.t[o] = a[l]returnm = (l + r) // 2self.build(o << 1, l, m, a)self.build(o << 1|1, m + 1, r, a)self.maintain(o)def update(self, o:int, l:int, r:int, i:int, val:int):if l == r:self.t[o] = valreturnm = (l + r) // 2if i <= m:self.update(o << 1, l, m, i, val)else:self.update(o << 1|1, m + 1, r, i, val)self.maintain(o)def query(self, o:int, l:int, r:int, val:int)->int:if self.t[o] < val:return -1if l == r:return lm = (l + r) // 2i = self.query(o << 1, l, m, val)if i < 0:i = self.query(o << 1|1, m + 1, r, val)return iclass Solution:def numOfUnplacedFruits(self, fruits: List[int], baskets: List[int]) -> int:n = cnt = len(fruits)t = SegTree(baskets)for x in fruits:i = t.query(1, 0, n - 1, x)if i >= 0:t.update(1, 0, n - 1, i, -1)cnt -= 1return cnt
四、删除一个冲突对后最大子数组数目
题目问删除一个冲突后,能得到的合法子数组的最大个数。大致思路如下
- 1、考虑不删除冲突,能得到的合法子数组的个数,记为 b a s e base base
- 2、考虑去掉一个冲突对后,会增加多少个合法子数组 记为 e x t r a extra extra
- 答案为 b a s e + m a x ( e x t r a ) base + max(extra) base+max(extra)
如何求出 b a s e ? base? base? 对于求解子数组的个数问题,我们一般通过枚举左端点 / / / 右端点,来逐一统计合法子数组的个数,然后相加得到。这里我们从后往前枚举左端点
如何求出 e x t r a ? extra? extra? 我们同样去模拟去掉一个冲突之后,哪些左端点的合法子数组增加了即可
代码如下
// C++
class Solution {
public:long long maxSubarrays(int n, vector<vector<int>>& conflictingPairs) {long long ans = 0;// 只需要知道前最小值,次小值即可vector<array<int, 2>> g(n + 1, {n + 1, n + 1});for(auto& conflict: conflictingPairs){int x = conflict[0], y = conflict[1];if(x > y) swap(x, y);if(y < g[x][0]) g[x][1] = g[x][0], g[x][0] = y;else if(y < g[x][1]) g[x][1] = y;}vector<long long> extra(n + 2);int b0 = n + 1, b1 = n + 1;for(int i = n; i > 0; i--){auto& v = g[i];if(v[0] < b0) b1 = b0, b0 = v[0];else if(v[0] < b1) b1 = v[0];if(v[1] < b0) b1 = b0, b0 = v[1];else if(v[1] < b1) b1 = v[1];ans += b0 - i;extra[b0] += b1 - b0;}return ans + ranges::max(extra);}
};// 优化
class Solution {
public:long long maxSubarrays(int n, vector<vector<int>>& conflictingPairs) {long long ans = 0;// 只需要知道前最小值,次小值即可vector<array<int, 2>> g(n + 1, {n + 1, n + 1});for(auto& conflict: conflictingPairs){int x = conflict[0], y = conflict[1];if(x > y) swap(x, y);if(y < g[x][0]) g[x][1] = g[x][0], g[x][0] = y;else if(y < g[x][1]) g[x][1] = y;}// vector<long long> extra(n + 2);// 由于 b0 是单调递减的,所以可以用 pre_b0, mx 来维护 extra 的最大值int b0 = n + 1, b1 = n + 1, pre_b0 = n + 1;long long s = 0, mx = 0;for(int i = n; i > 0; i--){auto& v = g[i];if(v[0] < b0) b1 = b0, b0 = v[0];else if(v[0] < b1) b1 = v[0];if(v[1] < b0) b1 = b0, b0 = v[1];else if(v[1] < b1) b1 = v[1];ans += b0 - i;if(pre_b0 != b0){pre_b0 = b0;s = 0;}s += b1 - b0;mx = max(mx, s);}return ans + mx;}
};
# Python
class Solution:def maxSubarrays(self, n: int, conflictingPairs: List[List[int]]) -> int:g = [[n+1, n+1] for _ in range(n + 1)]for conflict in conflictingPairs:x, y = conflict[0], conflict[1]if x > y:x, y = y, xif y < g[x][0]:g[x][1], g[x][0] = g[x][0], yelif y < g[x][1]:g[x][1] = ybase = mx = s = 0b0 = b1 = pre_b0 = n + 1for i in range(n, 0, -1):if g[i][0] < b0:b0, b1 = g[i][0], b0elif g[i][0] < b1:b1 = g[i][0]if g[i][1] < b0:b0, b1 = g[i][1], b0elif g[i][1] < b1:b1 = g[i][1]if b0 != pre_b0:pre_b0 = b0s = 0base += b0 - is += b1 - b0mx = max(mx, s)return base + mx