当前位置: 首页 > wzjs >正文

苏州工业园区质安监站网址自己建立网站

苏州工业园区质安监站网址,自己建立网站,渠道网络是什么意思,自动发卡网站怎么做DAY 44 预训练模型 知识点回顾: 预训练的概念常见的分类预训练模型图像预训练模型的发展史预训练的策略预训练代码实战:resnet18 作业: 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同尝试通…

DAY 44 预训练模型

知识点回顾:

  1. 预训练的概念
  2. 常见的分类预训练模型
  3. 图像预训练模型的发展史
  4. 预训练的策略
  5. 预训练代码实战:resnet18

作业:

  1. 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
  2. 尝试通过ctrl进入resnet的内部,观察残差究竟是什么

一、预训练的概念

我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

1. 如果最开始的初始值比较好,后续训练轮数就会少很多

2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值

我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

1. 如果最开始的初始值比较好,后续训练轮数就会少很多

2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值

现在再来看下之前一直用的cifar10数据集,他是不是就很明显不适合作为预训练数据集?

1. 规模过小:仅 10 万张图像,且尺寸小(32x32),无法支撑复杂模型学习通用视觉特征;

2. 类别单一:仅 10 类(飞机、汽车等),泛化能力有限;

这里给大家介绍一个常常用来做预训练的数据集,ImageNet,ImageNet 1000 个类别,有 1.2 亿张图像,尺寸 224x224,数据集大小 1.4G。

三、常见的分类预训练模型介绍

3.1 预训练模型的训练策略

那么什么模型会被选为预训练模型呢?比如一些调参后表现很好的cnn神经网络(固定的神经元个数+固定的层数等)。

所以调用预训练模型做微调,本质就是 用这些固定的结构+之前训练好的参数 接着训练

所以需要找到预训练的模型结构并且加载模型参数

相较于之前用自己定义的模型有以下几个注意点

1. 需要调用预训练模型和加载权重

2. 需要resize 图片让其可以适配模型

3. 需要修改最后的全连接层以适应数据集

其中,训练过程中,为了不破坏最开始的特征提取器的参数,最开始往往先冻结住特征提取器的参数,然后训练全连接层,大约在5-10个epoch后解冻训练。

主要做特征提取的部分叫做backbone骨干网络;负责融合提取的特征的部分叫做Featue Pyramid Network(FPN);负责输出的预测部分的叫做Head。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()
# 导入ResNet模型
from torchvision.models import resnet18# 定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):# 加载预训练模型(ImageNet权重)model = resnet18(pretrained=pretrained)# 修改最后一层全连接层,适配CIFAR-10的10分类任务in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)# 将模型转移到指定设备(CPU/GPU)model = model.to(device)return model
# 创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval()  # 设置为推理模式# 测试单张图片(示例)
from torchvision import utils# 从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = next(dataiter)
images = images[:1].to(device)  # 取第1张图片# 前向传播
with torch.no_grad():outputs = model(images)_, predicted = torch.max(outputs.data, 1)# 显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):model = models.resnet18(pretrained=pretrained)# 修改最后一层全连接层in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)return model.to(device)# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):"""冻结或解冻模型的卷积层参数"""# 冻结/解冻除fc层外的所有参数for name, param in model.named_parameters():if 'fc' not in name:param.requires_grad = not freeze# 打印冻结状态frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)total_params = sum(p.numel() for p in model.parameters())if freeze:print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")else:print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")return model# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):"""前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练"""train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []# 初始冻结卷积层if freeze_epochs > 0:model = freeze_model(model, freeze=True)for epoch in range(epochs):# 解冻控制:在指定轮次后解冻所有层if epoch == freeze_epochs:model = freeze_model(model, freeze=False)# 解冻后调整优化器(可选)optimizer.param_groups[0]['lr'] = 1e-4  # 降低学习率防止过拟合model.train()  # 设置为训练模式running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 主函数:训练模型
def main():# 参数设置epochs = 40  # 总训练轮次freeze_epochs = 5  # 冻结卷积层的轮次learning_rate = 1e-3  # 初始学习率weight_decay = 1e-4  # 权重衰减# 创建ResNet18模型(加载预训练权重)model = create_resnet18(pretrained=True, num_classes=10)# 定义优化器和损失函数optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)criterion = nn.CrossEntropyLoss()# 定义学习率调度器scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2, verbose=True)# 开始训练(前5轮冻结卷积层,之后解冻)final_accuracy = train_with_freeze_schedule(model=model,train_loader=train_loader,test_loader=test_loader,criterion=criterion,optimizer=optimizer,scheduler=scheduler,device=device,epochs=epochs,freeze_epochs=freeze_epochs)print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')# print("模型已保存至: resnet18_cifar10_finetuned.pth")if __name__ == "__main__":main()

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import resnet18, densenet121
from torchsummary import summary  # 查看模型结构
import matplotlib.pyplot as plt# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# CIFAR10 数据预处理
transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)class DenseNetC10(nn.Module):def __init__(self, num_classes=10):super(DenseNetC10, self).__init__()# 压缩原版 DenseNet121,减少层数和通道数self.features = nn.Sequential(nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),# 3个密集块,每个块含3层self._make_dense_block(32, 32, num_layers=3),self._make_dense_block(64, 32, num_layers=3),self._make_dense_block(96, 32, num_layers=3),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)))self.classifier = nn.Linear(128, num_classes)def _make_dense_block(self, in_channels, growth_rate, num_layers):layers = []for _ in range(num_layers):layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))layers.append(nn.BatchNorm2d(growth_rate))layers.append(nn.ReLU(inplace=True))in_channels += growth_ratereturn nn.Sequential(*layers)def forward(self, x):features = self.features(x)out = features.view(features.size(0), -1)out = self.classifier(out)return out# 初始化模型
models = {'DenseNet-C10': DenseNetC10().to(device),'MobileViT': MobileViT().to(device),'RepVGG': RepVGG().to(device),'ResNet18': resnet18(pretrained=False, num_classes=10).to(device)  # 对比基准
}# 训练超参数
criterion = nn.CrossEntropyLoss()
accuracies = {}for model_name, model in models.items():print(f'\nTraining {model_name}...')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)best_acc = 0.0for epoch in range(1, 201):train_model(model, criterion, optimizer, epoch)acc = test_model(model, criterion)if acc > best_acc:best_acc = accaccuracies[model_name] = best_acc# 打印对比结果
print('\nFinal Accuracy Comparison:')
for name, acc in accuracies.items():print(f'{name}: {acc:.2f}%')def visualize_residual(model, data):# 注册钩子函数捕捉残差块输出residuals = []def hook(module, input, output):residual = output - input[0]  # 残差 = 输出 - 输入residuals.append(residual.detach().cpu())# 选择ResNet18的第一个残差块(layer1[0])model.layer1[0].register_forward_hook(hook)with torch.no_grad():model(data.to(device))# 可视化残差图(取第一个样本的第一个通道)residual = residuals[0][0, 0, :, :]  # 形状(32,32)plt.figure(figsize=(6, 4))plt.subplot(1, 2, 1)plt.imshow(data[0].permute(1, 2, 0))  # 原始图像plt.title('Input Image')plt.subplot(1, 2, 2)plt.imshow(residual, cmap='coolwarm')  # 残差热力图plt.title('Residual Map')plt.colorbar()plt.show()# 测试残差可视化(用ResNet18和测试集中的一张图像)
resnet_model = resnet18(num_classes=10).to(device)
data, _ = next(iter(test_loader))
visualize_residual(resnet_model, data[:1])  # 取第一个样本

@浙大疏锦行


文章转载自:

http://wqipwWXn.ypdwc.cn
http://uJw0NneZ.ypdwc.cn
http://TPuV8DpM.ypdwc.cn
http://36ahIaaI.ypdwc.cn
http://7cbJLxpr.ypdwc.cn
http://vCUrmCn3.ypdwc.cn
http://xyrpNbhG.ypdwc.cn
http://2dni0QD4.ypdwc.cn
http://95nTIkiU.ypdwc.cn
http://kx6UmCCg.ypdwc.cn
http://z0irVrMS.ypdwc.cn
http://Rf9z3jk7.ypdwc.cn
http://u9DJgid3.ypdwc.cn
http://1GYk8nhQ.ypdwc.cn
http://Ff11GwNs.ypdwc.cn
http://b7fnfnjH.ypdwc.cn
http://GWOchzdE.ypdwc.cn
http://nVwKU4hb.ypdwc.cn
http://UeJxCf5m.ypdwc.cn
http://q3SYcjZL.ypdwc.cn
http://rwi4IS6H.ypdwc.cn
http://CPn99jTu.ypdwc.cn
http://OIHTIxBX.ypdwc.cn
http://aPvKgMmH.ypdwc.cn
http://8WpCjCIO.ypdwc.cn
http://7zyuWBxC.ypdwc.cn
http://DoSgz7hY.ypdwc.cn
http://5QMe2X67.ypdwc.cn
http://Mxv6sUt9.ypdwc.cn
http://daZrpiWp.ypdwc.cn
http://www.dtcms.com/wzjs/684653.html

相关文章:

  • 文创网站建设建设网站需要哪些经营范围
  • 动态购物网站开发源代码安徽网络seo
  • 微信怎么建设自己网站青岛房产网官网首页
  • 公司网站空间域名建设网站建设需要什么证书
  • 做照片视频的网站展馆设计公司排名
  • 手机制作小程序软件的app莆田seo培训
  • 网站开发类标书模板焦作网站建设公司
  • 马和人做人和牛做网站单页网站的优点
  • 广州seo网站葫芦岛建设网站
  • 网站制作学费多少钱如何自己创建app软件
  • 网站建设学什么好做网站网页维护手机App开发
  • 品牌网站案例阿里云增加网站
  • 义乌做网站zisou8浩森宇特北京网站建设
  • 镇江市机关效能与作风建设网站打开小程序入口直接进入
  • 静态网站怎么做优化53套网站源码
  • 企业组织网站建设方案网站的建设的含义
  • 优秀个人网站设计图片设计网站页面鉴赏技巧ppt
  • 长安网站建设多少钱绍兴建设用地使用权网站
  • 郑州网站及优化wordpress插件国际化
  • 新网网站建设资料互联网技术应用学什么
  • 网站建设的中期目标大型网站制作导图
  • 做外贸网站违法吗珠海网站建设怎么样
  • 如何建网站并做推广网站设计制作的服务和质量
  • 怎样把网站做成软件网站的提交重置按钮怎么做
  • 朝阳网站网站建设需要使用阿里云吗
  • 新的seo网站优化排名 网站制作app平台需要什么流程
  • 做免费的小说网站可以赚钱吗阿里百秀wordpress大前端
  • 福清市城乡建设局网站火车头采集器wordpress下载
  • wordpress用ip访问搜索引擎优化搜索优化
  • 建立公司微信平台 网站平台辽宁建筑信息网查询