当前位置: 首页 > wzjs >正文

网站设计大全推荐自己做的网站别人打不开

网站设计大全推荐,自己做的网站别人打不开,电脑上多了个wordpress,精品无人区高清不用下载文章目录 1.概率论基础1.1 单事件概率1.2 多事件概率1.3 条件概率1.3.1 多事件概率与条件概率的区别 1.4 贝叶斯定理传统思维误区贝叶斯定理计算 2. 朴素贝叶斯法2.1 基本概念2.2 模型2.3 学习策略2.4 优化算法2.5 优化技巧拉普拉斯平滑对数似然 3. 情感分析实战3.1 流程3.2 模…

文章目录

    • 1.概率论基础
      • 1.1 单事件概率
      • 1.2 多事件概率
      • 1.3 条件概率
        • 1.3.1 多事件概率与条件概率的区别
      • 1.4 贝叶斯定理
      • 传统思维误区
      • 贝叶斯定理计算
    • 2. 朴素贝叶斯法
      • 2.1 基本概念
      • 2.2 模型
      • 2.3 学习策略
      • 2.4 优化算法
      • 2.5 优化技巧
        • 拉普拉斯平滑
        • 对数似然
    • 3. 情感分析实战
      • 3.1 流程
      • 3.2 模型评价
      • 3.3 应用场景
      • 3.4 局限性
      • 3.4 局限性

1.概率论基础

1.1 单事件概率

定义一个事件发生的可能性
例子:假设事件A表示“一个文本是正向的”,则P(A) = 正向文本数 / 总文本数。
解释:比如有20个文本,其中13个是正向的,那么P(A) = 13/20 = 0.65。

image-20250405222006965

1.2 多事件概率

定义:多个事件同时发生的概率。
例子:事件A(文本是正向的)和事件B(文本包含单词“happy”)同时发生的概率P(A,B) = P(A∩B) = 3/20。

image-20250405222252829

举个例子:假设某餐厅统计发现:

  • 30%的订单点了汉堡(事件A)
  • 20%的订单同时点了汉堡和薯条(事件A∩B)

那么:

  • 多事件概率:P(汉堡且薯条) = 20%
    直接表示同时点这两样的概率

1.3 条件概率

定义:在已知事件B发生的情况下,事件A发生的概率,记作P(A|B)。
公式:P(A|B) = P(A∩B) / P(B)。
作用:缩小计算范围。例如,已知文本包含“happy”,计算它是正向的概率时,只需关注包含“happy”的文本。

延续刚刚的例子:已知某餐厅统计发现:

  • 薯条订单占全店40%(事件B)
  • 汉堡和薯条同时点占20%(事件A∩B)

则:

  • 条件概率:P(汉堡|已点薯条) = 20%/40% = 50% 【两者同时的概率 / 单单薯条的概率】
    (在已经点薯条的订单中,有50%会加购汉堡)

image-20250405223544164

1.3.1 多事件概率与条件概率的区别
维度多事件概率条件概率
计算范围全局样本空间限定在条件事件发生的子空间
信息量反映单纯共存概率揭示事件间的关联强度
应用场景分析事件组合频率研究因果关系/预测

典型误区分辨

  • ❌错误理解:“今天下雨且堵车”(多事件概率) vs “下雨导致堵车”(条件概率)
  • ✅正确区分:
    • 多事件概率:全市范围内同时下雨和堵车的概率(比如10%)
    • 条件概率:在下雨的日子里发生堵车的概率(可能高达70%)

NLP应用实例(情感分析)

假设分析1,000条商品评论:

  • 200条出现"价格"(事件A)
  • 50条同时出现"价格"和"昂贵"(事件A∩B)
  • "昂贵"出现总次数100次(事件B)

多事件概率
P(“价格"且"昂贵”) = 50/1000 = 5%
(所有评论中同时包含这两个词的概率)

条件概率
P(“昂贵”|出现"价格") = 50/200 = 25%
(在提到价格的评论中,"昂贵"出现的概率)【两者同时的概率 / 单单价格的概率】

1.4 贝叶斯定理

定义:通过已知事件Y反推事件X的概率。贝叶斯定理是"用结果反推原因"的概率计算方法。就像侦探破案:已知犯罪现场有某种证据(结果),计算某个嫌疑人作案(原因)的概率。
公式:P(X|Y) = P(Y|X) * P(X) / P(Y)。
用途:在分类问题中,通过观测数据反推类别概率。

举个例子(疾病检测)
假设:

  • 某疾病在人群中的患病率是1%(先验概率)
  • 检测准确率:
    • 有病的人,99%能测出性(真阳性率)
    • 病的人,2%会误测为性(假阳性率)

问题:如果一个人检测呈阳性,他实际患病的概率是多少?

传统思维误区

很多人会直接认为概率是99%,忽略了基础患病率。

贝叶斯定理计算

P(患病|阳性) = P(阳性|患病) * P(患病) / P(阳性) P(阳性) = [P(阳性|患病) * P(患病) + P(阳性|正常) * P(正常)
= (99% * 1%) / (99% * 1% + 2% * 99%) 这里的P(正常)更多的是:1-P(患病) = 99%
≈ 33%

【“患病”是因,“阳性”是果 ,先乘因,再除果

即使检测呈阳性,实际患病概率只有33%!

接下来我将对公式进行拆解:

P(原因|结果) = [P(结果|原因) × P(原因)] / P(结果)

  • P(原因)先验概率(已知的客观事实)
  • P(结果|原因):似然度(原因导致结果的可能性)
  • P(原因|结果)后验概率(我们想求的答案)

NLP应用实例(垃圾邮件过滤)

已知:

  • 邮件中出现**“折扣”**这个词:
    • 垃圾邮件中出现的概率是80%(P(折扣|垃圾))
    • 正常邮件中出现的概率是10%(P(折扣|正常))
  • 整体邮件中垃圾邮件占比20%(P(垃圾))

计算

P(垃圾|折扣) = [P(折扣|垃圾) * P(垃圾)] / [P(折扣|垃圾) * P(垃圾) + P(折扣|正常) * P(正常)]
= (80% * 20%) / (80% * 20% + 10% * 80%) 这里的P(正常)更多的是:1-P(垃圾) = 80%
= 66.7%

虽然"折扣"在垃圾邮件中出现概率高,但综合考量后,含这个词的邮件是垃圾邮件的概率是66.7%。

那么为什么叫"定理"?

因为可以通过条件概率公式严格推导:

  1. 根据条件概率定义:P(A|B)=P(A∩B)/P(B)
  2. 同理:P(B|A)=P(A∩B)/P(A)
  3. 联立两式消去P(A∩B)即得贝叶斯定理

2. 朴素贝叶斯法

2.1 基本概念

概述:基于贝叶斯定理的分类方法,假设特征之间相互独立(称为“朴素”)。
优点:简单高效,适合文本分类等任务。
缺点:特征独立性假设可能影响准确性。

条件独立假设

  • 假设所有特征在类别确定时彼此独立
  • 虽然简化计算,但现实中特征可能相关。

2.2 模型

目标:对输入数据x,预测最可能的类别y。
核心公式
y = argmax P(y) * Π P(x_i|y),即选择使后验概率最大的类别。

2.3 学习策略

极大似然估计(MLE)

  • 估计先验概率P(y)和条件概率P(x_i|y)。
  • 先验概率:P(y) = 类别y的样本数 / 总样本数。
  • 条件概率:P(x_i|y) = 类别y中特征x_i出现的次数 / 类别y的总样本数。

2.4 优化算法

后验概率最大化

  • 选择使后验概率最大的类别,等价于最小化分类错误。

2.5 优化技巧

拉普拉斯平滑

问题:某些特征未出现时概率为0,导致整体概率为0。
解决:分子加1,分母加特征总数V,避免零概率。

对数似然

问题:连乘小数可能导致数值下溢(结果过小无法表示)。
解决:对概率取对数,将连乘转为连加。

  • 概率比值:ratio(w_i) = P(w_i|正向) / P(w_i|负向)。
  • 对数似然:λ(w_i) = log(ratio(w_i))。
  • 最终决策:若对数先验 + Σλ(w_i) > 0,则为正向;否则为负向。

3. 情感分析实战

3.1 流程

  1. 数据预处理:清洗文本(如去标点、分词)。
  2. 构建词频表:统计单词在正向/负向文本中的出现次数。
  3. 计算概率
    • 条件概率:P(w_i|正向)和P(w_i|负向)。
    • 对数似然:λ(w_i) = log(P(w_i|正向)/P(w_i|负向))。
  4. 预测:根据对数先验 + Σλ(w_i)的符号判断情感倾向。

3.2 模型评价

准确度:正确预测的文本数 / 总文本数。

3.3 应用场景

  • 垃圾邮件分类
  • 新闻分类
  • 情感分析

3.4 局限性

  1. 条件独立假设:忽略单词间的关联(如“not happy”)。
  2. 数据不平衡:正向/负向样本数量差异大时影响效果。
  3. 文本复杂性
    • 标点可能携带情感(如“好!” vs “好?”)。
    • 停用词(如“的”)有时也有情感意义。
    • 反讽或夸张难以捕捉。
  • 新闻分类
  • 情感分析

3.4 局限性

  1. 条件独立假设:忽略单词间的关联(如“not happy”)。
  2. 数据不平衡:正向/负向样本数量差异大时影响效果。
  3. 文本复杂性
    • 标点可能携带情感(如“好!” vs “好?”)。
    • 停用词(如“的”)有时也有情感意义。
    • 反讽或夸张难以捕捉。

文章转载自:

http://gzXmD47F.cyysq.cn
http://RP4dSaOo.cyysq.cn
http://qzw2MBdB.cyysq.cn
http://24dLvn7G.cyysq.cn
http://ArN38NUP.cyysq.cn
http://GgU7Dg8C.cyysq.cn
http://KtKewtXp.cyysq.cn
http://QWNgZPGe.cyysq.cn
http://4qux27VX.cyysq.cn
http://HsNL6cH4.cyysq.cn
http://fx8uSwpS.cyysq.cn
http://jLKOmgpb.cyysq.cn
http://6nUSH0hU.cyysq.cn
http://QIBg4eH8.cyysq.cn
http://KUxO6Ffs.cyysq.cn
http://wv7DsIIc.cyysq.cn
http://z46ujybK.cyysq.cn
http://LAq0fChC.cyysq.cn
http://Hm1bmlm7.cyysq.cn
http://skZoY1Ew.cyysq.cn
http://PT7pjK7j.cyysq.cn
http://Kn2VgYKQ.cyysq.cn
http://gvJ6Fefh.cyysq.cn
http://HYDc73K0.cyysq.cn
http://1CMz80Dq.cyysq.cn
http://3ykoTYgm.cyysq.cn
http://SPySJWRQ.cyysq.cn
http://v7kRo1qc.cyysq.cn
http://3WY2pnBh.cyysq.cn
http://kJnXbKrb.cyysq.cn
http://www.dtcms.com/wzjs/681218.html

相关文章:

  • 网站栏目是什么潍坊网站制作发
  • 计算机网站建设体会上海最大的网站建设
  • 南阳网站设计wordpress主题发布
  • 怎样做自己的个人网站一个网站项目开发流程
  • 网站开发报价ppt怎么样建立自己的视频网站
  • 广州做手机网站信息云服务器怎么样做网站
  • 餐厅网站建设杭州互助盘网站开发
  • 外国购物网站设计风格东莞建设网站官网
  • 柳州营销网站建设深圳做网站多少
  • 查看网站百度排名wordpress查询数据库页面
  • 免费建站网站教程wordpress占内存
  • 网站设计建设合同是网站在线咨询系统
  • 手工艺品网站建设策划书客户网站建设确认书
  • 大气黑色机械企业网站源码移动网站 pc网站的区别
  • nanopi neo做网站软件技术主要学什么课程
  • 英文网站建设教程做网站编辑要会什么
  • 做书app下载网站经典重庆论坛畅谈重庆
  • 北京网站建设模板案例wordpress更改编辑器
  • 网站粘性网站用户访问统计
  • 网站建设运营与维护标准做网站心得
  • 阜新网站设计dw可以用来做网站吗
  • 学生诚信档案建设网站网站建设行业新闻
  • 在国际网站做外贸需要条件怎么样做微网站
  • 西安做视频网站公司多语言网站建设推广
  • 网站上添加子栏目wordpress博客备份
  • 网站建设色彩搭配金融类网站源码
  • 做网站需要什么费用wordpress基础版
  • 大良营销网站建设如何网站服务器建设方案
  • 长安外贸网站建设yy直播是个什么样的平台
  • 网站的推广和宣传方式母婴网站建设 社区