当前位置: 首页 > wzjs >正文

网站定制兴田德润i在哪里建网站网站建设

网站定制兴田德润i在哪里,建网站网站建设,WordPress文章分享图,顺义顺德网站建设引言 最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。这是第二篇。 MCP实战 MCP有通过高级API和底层API实现两种方法,我们先来看下底层API如何实现。 底层 API实现 服务器端: server.py: import anyio # …

引言

最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。这是第二篇。

MCP实战

MCP有通过高级API和底层API实现两种方法,我们先来看下底层API如何实现。

底层 API实现

服务器端:

server.py:

import anyio  # AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio.
import click  # Click is a Python package for creating beautiful command line interfaces in a composable way with as little code as necessary.
import httpx
import mcp.types as types
from mcp.server.lowlevel import Serverfrom datetime import datetime
from tavily import TavilyClient
import os
import jsonfrom dotenv import load_dotenvload_dotenv()tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))def get_now() -> list[types.TextContent]:return_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")return [types.TextContent(type="text", text=return_str)]def web_search(query: str) -> list[types.TextContent]:response = tavily_client.search(query)results = response.get("results")return [types.TextContent(type="text", text=result.get("content")) for result in results]@click.command()
@click.option("--port", default=8000, help="Port to listen on for SSE")
@click.option("--transport",type=click.Choice(["stdio", "sse"]),default="stdio",help="Transport type",
)
def main(port: int, transport: str) -> int:app = Server("mcp-test-server")@app.call_tool()async def fetch_tool(name: str, arguments: dict) -> list[types.TextContent]:if name == "get_now":return get_now()elif name == "web_search":return web_search(arguments["query"])else:raise ValueError(f"Unkonw tool: {name}")@app.list_tools()async def list_tools() -> list[types.Tool]:return [types.Tool(name="web_search",description="进行谷歌搜索,可以查询最近发生的实事、天气等",inputSchema={"type": "object","required": ["query"],"properties": {"query": {"type": "string","description": "要进行互联网搜索的查询",}},},),types.Tool(name="get_now",description="获取当前时间",inputSchema={},),]if transport == "sse":from mcp.server.sse import SseServerTransportfrom starlette.applications import (Starlette,)  # Starlette is a lightweight ASGI framework/toolkit, which is ideal for building async web services in Python.from starlette.routing import Mount, Routesse = SseServerTransport("/messages/")async def handle_sse(request):async with sse.connect_sse(request.scope, request.receive, request._send) as streams:await app.run(streams[0], streams[1], app.create_initialization_options())starlette_app = Starlette(debug=True,routes=[Route("/sse", endpoint=handle_sse),Mount("/messages/", app=sse.handle_post_message),],)import uvicornuvicorn.run(starlette_app, host="0.0.0.0", port=port)else:from mcp.server.stdio import stdio_serverasync def arun():async with stdio_server() as streams:await app.run(streams[0], streams[1], app.create_initialization_options())anyio.run(arun)return 0if __name__ == "__main__":import syssys.exit(main())# python -m server --transport sse

服务器端支持sse和stdio,如果以sse启动: python -m server --transport sse

客户端:

client.py:

import asyncio
import json
import os
import sys
import logging
from typing import Optional
from contextlib import AsyncExitStack
from mcp import ClientSession
from mcp.client.sse import sse_client
from openai import AsyncOpenAI
from dotenv import load_dotenvload_dotenv()# 配置日志系统
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)class MCPChatClient:def __init__(self):self.session: Optional[ClientSession] = Noneself.exit_stack = AsyncExitStack()# 初始化 OpenAI 客户端self.openai = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"),base_url=os.getenv("OPENAI_BASE_URL"),)async def __aenter__(self):await self.exit_stack.__aenter__()return selfasync def __aexit__(self, exc_type, exc_val, exc_tb):await self.exit_stack.__aexit__(exc_type, exc_val, exc_tb)async def connect(self, server_url: str):logger.info(f"Connecting to SSE server at {server_url}...")# 连接 SSE 服务端并创建 MCP 会话streams = await self.exit_stack.enter_async_context(sse_client(url=server_url))self.session = await self.exit_stack.enter_async_context(ClientSession(*streams))await self.session.initialize()# 获取并打印可用工具列表response = await self.session.list_tools()tools = response.toolslogger.info(f"Connected to server with tools: {[tool.name for tool in tools]}")async def handle_query(self, user_input: str) -> str:messages = [{"role": "user", "content": user_input}]response = await self.session.list_tools()# 将 MCP 工具列表格式化为 OpenAI function calling 格式tools_payload = [{"type": "function","function": {"name": tool.name,"description": tool.description,"parameters": tool.inputSchema,},}for tool in response.tools]logger.debug(f"Available tools: {json.dumps(tools_payload, indent=2)}")# 首次调用 OpenAI Chat Completionchat_response = await self.openai.chat.completions.create(model=os.getenv("OPENAI_MODEL"),max_tokens=1000,messages=messages,tools=tools_payload,)output_texts = []assistant_msg = chat_response.choices[0].message# 检查是否触发了工具调用if assistant_msg.tool_calls:for tool_call in assistant_msg.tool_calls:tool_name = tool_call.function.nametool_args = json.loads(tool_call.function.arguments)try:# 执行工具调用result = await self.session.call_tool(tool_name, tool_args)output_texts.append(f"[Called {tool_name} with args {tool_args}]")# 将工具调用响应添加到对话中messages.extend([{"role": "assistant","content": None,"tool_calls": [tool_call],},{"role": "tool","tool_call_id": tool_call.id,"content": result.content[0].text,},])logger.info(f"Tool {tool_name} returned: {result.content[0].text}")# 根据工具响应再次请求 OpenAI,继续对话chat_response = await self.openai.chat.completions.create(model=os.getenv("OPENAI_MODEL"),max_tokens=1000,messages=messages,)content = chat_response.choices[0].message.contentoutput_texts.append(str(content))except Exception as e:logger.exception(f"Error calling tool {tool_name} with args {tool_args}.")else:# 没有工具调用,直接返回 Assistant 的响应content = assistant_msg.contentoutput_texts.append(str(content))return "\n".join(output_texts)async def interactive_chat(self):print("\nMCP Chat Client Started!")print("Type your queries or 'q' to exit.")while True:try:query = input("\nQuery: ").strip()if query.lower() == "q":breakresponse = await self.handle_query(query)print("\n" + response)except Exception as e:logger.exception("Unexpected error during chat interaction.")async def main():if len(sys.argv) < 2:print("Usage: python -m client <SSE MCP server URL>")sys.exit(1)try:async with MCPChatClient() as client:await client.connect(server_url=sys.argv[1])await client.interactive_chat()except Exception:logger.exception("Failed to start MCPChatClient.")if __name__ == "__main__":asyncio.run(main())

假设服务器以sse启动,通过python -m client http://localhost:8000/sse启动客户端。这里示例了通过OpenAI协议中的函数调用方式来实现MCP的工具调用,实际上还可通过ReACT等方式。

fastmcp实现

MCP的sdk提供了高级API实现,可以快速编写服务器:

fast_server.py:

from mcp.server.fastmcp import FastMCPfrom datetime import datetime
from tavily import TavilyClient
import osfrom dotenv import load_dotenvload_dotenv()tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))mcp = FastMCP("test-demo", port="8088")@mcp.tool()
def get_now() -> str:"""获取当前时间Returns:str: %Y-%m-%d %H:%M:%S 格式的时间"""return datetime.now().strftime("%Y-%m-%d %H:%M:%S")@mcp.tool()
def web_search(query: str) -> list[str]:"""进行谷歌搜索,可以查询最近发生的实事、天气等Args:query (str): 要进行互联网搜索的查询Returns:list[str]: 查询结果列表"""response = tavily_client.search(query)results = response.get("results")return [result.get("content") for result in results]if __name__ == "__main__":# Initialize and run the servermcp.run(transport="sse")

可以看到这里我们主要关心的就是如何定义好工具。

首先通过python fast_server.py启动服务端,然后通过python -m client http://localhost:8088/sse启动客户端。

客户端日志:

> python -m client http://localhost:8088/sse
INFO:__main__:Connecting to SSE server at http://localhost:8088/sse...
INFO:mcp.client.sse:Connecting to SSE endpoint: http://localhost:8088/sse
INFO:httpx:HTTP Request: GET http://localhost:8088/sse "HTTP/1.1 200 OK"
INFO:mcp.client.sse:Received endpoint URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
INFO:mcp.client.sse:Starting post writer with endpoint URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:__main__:Connected to server with tools: ['get_now', 'web_search']

服务端日志:

> python fast_server.py
INFO:     Started server process [97933]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8088 (Press CTRL+C to quit)
INFO:     127.0.0.1:50789 - "GET /sse HTTP/1.1" 200 OK
INFO:     127.0.0.1:50791 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:50793 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:50795 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
[04/08/25 15:32:04] INFO     Processing request of type ListToolsRequest   

从上面的日志可以看到:

  1. 客户端通过http://localhost:8088/sse建立连接
  2. 服务端返回带session_id的URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
  3. 客户端通过这个端点发送POST请求,进入初始化阶段(能力协商等)。
  4. 然后发送了ListToolsRequest请求获取工具列表。
    • 这里返回了服务端定义的两个工具

然后假设用户输入了一个问题(客户端日志):

MCP Chat Client Started!
Type your queries or 'q' to exit.Query: 现在几点了
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://***/v1/chat/completions "HTTP/1.1 200 "
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 "HTTP/1.1 202 Accepted"
INFO:__main__:Tool get_now returned: 2025-04-08 16:11:54
INFO:httpx:HTTP Request: POST http://***/v1/chat/completions "HTTP/1.1 200 "[Called get_now with args {}]
现在的时间是2025年4月8日16点11分54秒。 Query: 

服务端日志:

INFO:     127.0.0.1:60904 - "POST /messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 HTTP/1.1" 202 Accepted
[04/08/25 16:11:51] INFO     Processing request of type ListToolsRequest                                                                                                       server.py:534
INFO:     127.0.0.1:60925 - "POST /messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 HTTP/1.1" 202 Accepted
[04/08/25 16:11:54] INFO     Processing request of type CallToolRequest         

这里用户输入了一个问题,实际上执行过程如下:

  1. 通过带session_id的URL发送POST请求获取工具列表(ListToolsRequest)
  2. 服务端返回工具列表
  3. 调用LLM来决定是否需要调用工具
  4. (这里需要调用工具)发送CallToolRequest
  5. 服务端处理CallToolRequest,执行工具调用并返回结果
  6. 客户端对工具调用结果进行渲染,返回给用户

参考

  1. https://modelcontextprotocol.io/
  2. https://spec.modelcontextprotocol.io/specification/2025-03-26/
  3. https://github.com/sidharthrajaram/mcp-sse

文章转载自:

http://o55ReISZ.tsgxz.cn
http://TqJlG3jX.tsgxz.cn
http://j4cx0QfG.tsgxz.cn
http://BkeyPbiu.tsgxz.cn
http://4cBCISxC.tsgxz.cn
http://TODvCO3I.tsgxz.cn
http://XyruMkOt.tsgxz.cn
http://XVORISyq.tsgxz.cn
http://dERaPaJt.tsgxz.cn
http://MC4OtRBE.tsgxz.cn
http://9ZsIlEJ7.tsgxz.cn
http://8NOyjOeL.tsgxz.cn
http://colM9w1H.tsgxz.cn
http://6TUpjDtu.tsgxz.cn
http://oFVrm12L.tsgxz.cn
http://doR5fKnY.tsgxz.cn
http://Pqj31BJF.tsgxz.cn
http://UP48owze.tsgxz.cn
http://m8WfqS8c.tsgxz.cn
http://TnJcifSc.tsgxz.cn
http://pb0JuB8B.tsgxz.cn
http://pAb5PBUG.tsgxz.cn
http://qaqZTHBR.tsgxz.cn
http://bIPO6jxn.tsgxz.cn
http://OXv2wO8i.tsgxz.cn
http://vSJty9JG.tsgxz.cn
http://771oDQkM.tsgxz.cn
http://omFENaZO.tsgxz.cn
http://Q7K3Wbwe.tsgxz.cn
http://QZ6CFzEg.tsgxz.cn
http://www.dtcms.com/wzjs/676785.html

相关文章:

  • 免费安全网站认证企业网站设计策划
  • 深圳网站开发哪个公司好海外社交媒体平台
  • 织梦网站更换域名新乡做新网站
  • 江苏省医院网站建设管理规范怎么恶意点击对手竞价
  • 闸北区网站设计与制作安顺建设工程造价管理网站
  • 朋友圈网站文章怎么做福建省住房城乡和城乡建设厅网站
  • 做非法网站人人设计网网址
  • 个人开店做外贸网站建设公司官网的请示
  • 代做原创毕业设计网站做网站需要公司备案
  • 济南外贸网站制作html制作网页的代码
  • 织梦禁止网站右击餐饮网站建设服务器
  • 锦州做网站公司合肥关键词网站排名
  • 企业网站设计过程中做网站页面用什么
  • 妇幼网站建设pptvue门户网站模板
  • 网站建设制作介绍河南seo优化方法有哪些
  • 大学生创业服务网站建设方案网站栏目排序
  • 包包网站建设策划书个人网站备案备注信息
  • 购物网站的建设思维导图做个网站上百度怎么做
  • wordpress仿站软件中裕隆建设有限公司网站
  • 网站导航栏代码常平哪里有招计算机网站开发的
  • 网站快照wordpress采集淘宝
  • 深圳市网站制作最好的公司163邮箱登录企业邮箱
  • 班级网站建设规划书国内外ai设计素材网站
  • 西安网站优化公司美食网站建设的意义
  • wordpress主题 淘宝客seo精华网站
  • 潍坊做网站联系方式网站建设课程教学计划
  • 苏州吴中区建设局网站哈尔滨做网站建设
  • 网站建设ssc源码平台济南活动搭建公司
  • 网站开发什么技术海东地网站建设
  • 将二级域名 网站目录做网站底色怎么选