当前位置: 首页 > wzjs >正文

做网站用vue还是用jquerysemantic scholar

做网站用vue还是用jquery,semantic scholar,学校建设网站前的市场分析,中国建设银行河北省分行官方网站CUDA编程 - 测量每个block内线程块的执行时间 完整代码与例程目的代码拆解与复用一、计时机制设计原理(块级独立计时)(应用到自己的项目中)二、关键实现细节2.1、​共享内存优化2.2、​​同步控制机制2.3、​统计处理策略 三、优势…

CUDA编程 - 测量每个block内线程块的执行时间

  • 完整代码与例程目的
  • 代码拆解与复用
    • 一、计时机制设计原理(块级独立计时)(应用到自己的项目中)
    • 二、关键实现细节
      • 2.1、​共享内存优化
      • 2.2、​​同步控制机制
      • 2.3、​统计处理策略
    • 三、优势和劣势

完整代码与例程目的

代码地址:https://github.com/NVIDIA/cuda-samples/tree/v11.8/Samples/0_Introduction/clock

clock() 直接使用GPU硬件的时钟计数器,精度更高(时钟周期级别)。
如果使用 cudaEventnsys工具更侧重于测量 kernel 整体耗时

本示例演示了如何使用时钟函数精确测量内核中线程块的执行性能。由于线程块是并行且无序执行的,且块间缺乏同步机制,我们通过为每个块单独测量时钟值的方式实现性能监控。所有时钟采样值将被写入设备内存。

关键要点说明:
测量对象:单个线程块(block)的执行周期数
并行特性:块间并行执行且无固定顺序 实现限制:块间无同步机制 → 独立测量每个块
数据存储:时钟采样值直接写入显存(device memory)

完整代码:
clock.cu

// System includes
#include <assert.h>
#include <stdint.h>
#include <stdio.h>// CUDA runtime
#include <cuda_runtime.h>// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>// This kernel computes a standard parallel reduction and evaluates the
// time it takes to do that for each block. The timing results are stored
// in device memory.
__global__ static void timedReduction(const float *input, float *output,clock_t *timer) {// __shared__ float shared[2 * blockDim.x];extern __shared__ float shared[];const int tid = threadIdx.x;const int bid = blockIdx.x;if (tid == 0) timer[bid] = clock();// Copy input.shared[tid] = input[tid];shared[tid + blockDim.x] = input[tid + blockDim.x];// Perform reduction to find minimum.for (int d = blockDim.x; d > 0; d /= 2) {__syncthreads();if (tid < d) {float f0 = shared[tid];float f1 = shared[tid + d];if (f1 < f0) {shared[tid] = f1;}}}// Write result.if (tid == 0) output[bid] = shared[0];__syncthreads();if (tid == 0) timer[bid + gridDim.x] = clock();
}#define NUM_BLOCKS 64
#define NUM_THREADS 256// It's interesting to change the number of blocks and the number of threads to
// understand how to keep the hardware busy.
//
// Here are some numbers I get on my G80:
//    blocks - clocks
//    1 - 3096
//    8 - 3232
//    16 - 3364
//    32 - 4615
//    64 - 9981
//
// With less than 16 blocks some of the multiprocessors of the device are idle.
// With more than 16 you are using all the multiprocessors, but there's only one
// block per multiprocessor and that doesn't allow you to hide the latency of
// the memory. With more than 32 the speed scales linearly.// Start the main CUDA Sample here
int main(int argc, char **argv) {printf("CUDA Clock sample\n");// This will pick the best possible CUDA capable deviceint dev = findCudaDevice(argc, (const char **)argv);float *dinput = NULL;float *doutput = NULL;clock_t *dtimer = NULL;clock_t timer[NUM_BLOCKS * 2];float input[NUM_THREADS * 2];for (int i = 0; i < NUM_THREADS * 2; i++) {input[i] = (float)i;// std::cout << input[i] << std::endl;}checkCudaErrors(cudaMalloc((void **)&dinput, sizeof(float) * NUM_THREADS * 2));checkCudaErrors(cudaMalloc((void **)&doutput, sizeof(float) * NUM_BLOCKS));checkCudaErrors(cudaMalloc((void **)&dtimer, sizeof(clock_t) * NUM_BLOCKS * 2));checkCudaErrors(cudaMemcpy(dinput, input, sizeof(float) * NUM_THREADS * 2,cudaMemcpyHostToDevice));timedReduction<<<NUM_BLOCKS, NUM_THREADS, sizeof(float) * 2 * NUM_THREADS>>>(dinput, doutput, dtimer);checkCudaErrors(cudaMemcpy(timer, dtimer, sizeof(clock_t) * NUM_BLOCKS * 2,cudaMemcpyDeviceToHost));checkCudaErrors(cudaFree(dinput));checkCudaErrors(cudaFree(doutput));checkCudaErrors(cudaFree(dtimer));long double avgElapsedClocks = 0;for (int i = 0; i < NUM_BLOCKS; i++) {avgElapsedClocks += (long double)(timer[i + NUM_BLOCKS] - timer[i]);}avgElapsedClocks = avgElapsedClocks / NUM_BLOCKS;printf("Average clocks/block = %Lf\n", avgElapsedClocks);return EXIT_SUCCESS;
}

代码拆解与复用

一、计时机制设计原理(块级独立计时)(应用到自己的项目中)

每个线程块独立记录起始/结束时钟值:

__global__ void timedReduction(...) {if (tid == 0) timer[bid] = clock();       // 块开始时间// ... 计算逻辑if (tid == 0) timer[bid + gridDim.x] = clock(); // 块结束时间
}

这种设计避免了块间同步问题,因为GPU的SM(流处理器簇)会并行执行多个块,无法保证全局同步

所以可以直接参考这种方式,应用到自己的项目中进行计时。

二、关键实现细节

2.1、​共享内存优化

通过extern __shared__ float shared[] 声明动态共享内存:

__global__ static void timedReduction(...) {extern __shared__ float shared[];// 加载数据到共享内存shared[tid] = input[tid];shared[tid + blockDim.x] = input[...];
}

确保线程块内数据访问的高效性,避免全局内存延迟对计时的影响

2.2、​​同步控制机制

使用__syncthreads()保证块内线程同步:

for (int d = blockDim.x; d > 0; d /= 2) {__syncthreads();  // 同步所有线程// 归约计算
}

2.3、​统计处理策略

主机端计算每个块的时钟周期差:

long double avgElapsedClocks = 0;
for (int i = 0; i < NUM_BLOCKS; i++) {avgElapsedClocks += (timer[i + NUM_BLOCKS] - timer[i]);
}

通过平均多个块的执行时间,消除硬件调度波动的影响。可以调整 block 和 thread 数量进行测试。

三、优势和劣势

优势:

  • 避免全局同步开销,适应GPU并行执行特性
  • 块级细粒度测量,定位性能瓶颈更精确
  • 无需额外硬件支持(如CUDA事件需要特定计算能力)

局限:

  • 不同SM时钟域可能存在微小偏差
  • 无法测量内核启动/数据传输时间
  • 需手动处理线程束发散(Warp Divergence)的影响
http://www.dtcms.com/wzjs/67054.html

相关文章:

  • 哪个网站是用vue做的东莞seo建站哪家好
  • 管家婆免费资料网站百度指数查询手机版
  • 重庆玖玺国际做网站怎么自己创建一个网页
  • 网站开发合同书千锋教育学费一览表
  • 优品ppt模板免费下载网站seo原创工具
  • 厦门微信网站建设最火网站排名
  • wordpress安装ssl北京百度推广seo
  • 淘宝客网站做好了该怎么做企业推广app
  • 480元做网站优化 英语
  • 校园网站建设实施方案百度指数官网移动版
  • 佛山模板建站软件seo诊断分析在线工具
  • 新密做网站优化58黄页网推广公司
  • 怎么做网站渗透精准引流获客软件
  • h5和网站的区别排名第一的玉米品种
  • 用心做电影的网站百度贴吧热线客服24小时
  • php做电商网站开题报告营销百度app下载手机版
  • 芯片设计公司排名seo资源咨询
  • 网站 做 app留号码的广告网站
  • 网站建设心得体会晚上偷偷看b站软件推荐
  • 网站代理 正规备案网络推广公司介绍
  • 做网站的最大的挑战是什么怎么样做一个自己的网站
  • 服装网站怎么做chinaz站长素材
  • 网站没有模版能打开吗解释seo网站推广
  • 做盗版电影网站犯法吗广告搜索引擎
  • 嘉定区网站建设自媒体培训学校
  • 哪个网站做海外代购接app推广接单平台
  • 网站可以不公安备案吗百度经验
  • 个人网站运营怎么做产品软文范例
  • 网站开发软件网站开发营销渠道策略有哪些
  • 公司做免费网站无锡网络优化推广公司