当前位置: 首页 > wzjs >正文

景德镇市城市建设规划网站建设企业网站源码

景德镇市城市建设规划网站,建设企业网站源码,网站后台地址修改,望野古诗【深度学习】Transformer 技术报告:架构与原理 一、引言二、Transformer 的基本架构2.1 总体架构2.2 编码器(Encoder)2.3 解码器(Decoder)2.4 输入嵌入与位置编码 三、Transformer 的关键特性四、应用场景五、总结 一、…

【深度学习】Transformer 技术报告:架构与原理

    • 一、引言
    • 二、Transformer 的基本架构
      • 2.1 总体架构
      • 2.2 编码器(Encoder)
      • 2.3 解码器(Decoder)
      • 2.4 输入嵌入与位置编码
    • 三、Transformer 的关键特性
    • 四、应用场景
    • 五、总结

一、引言

Transformer 是一种基于注意力机制(Attention Mechanism)的深度学习架构,最初由 Vaswani 等人在 2017 年的论文《Attention Is All You Need》中提出。它彻底改变了自然语言处理(NLP)领域,成为许多语言模型和任务的核心架构。Transformer 的设计理念是摒弃传统的循环神经网络(RNN)及其变体(如 LSTM 和 GRU),转而通过并行计算和注意力机制高效处理序列数据。

二、Transformer 的基本架构

2.1 总体架构

Transformer 采用编码器 - 解码器(Encoder-Decoder)架构,主要用于处理序列到序列的任务,如机器翻译、文本生成等。编码器负责将输入序列编码为上下文表示,解码器则基于这些上下文信息生成输出序列。整个架构由以下部分组成:

编码器(Encoder):由多个相同的层(通常为 6 层)堆叠而成,每层包含两个子层。

解码器(Decoder):同样由多个相同的层堆叠而成,每层包含三个子层。

输入嵌入与位置编码:为输入序列提供初始表示,并保留序列的顺序信息。

输出层:将解码器的输出转换为目标序列。

2.2 编码器(Encoder)

编码器由多个相同的层组成,每层包含两个子层:

多头自注意力层(Multi-Head Self-Attention Layer)

作用:允许模型在处理输入序列时,同时关注序列中的所有位置,捕捉词与词之间的关系。

机制:将输入序列分割成多个 “头”(Head),每个头独立计算注意力权重,然后将所有头的输出拼接起来。这种设计能够捕捉到输入序列中不同子空间的特征。

公式

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中,Q、K、V 分别代表查询(Query)、键(Key)和值(Value), d k d_k dk是键向量的维度。

多头注意力:

MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO

其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i=\text{Attention}(QW_i^Q,KW_i^K,VW_i^V) headi=Attention(QWiQ,KWiK,VWiV),h 是头的数量。

前馈网络层(Feed Forward Network Layer)

作用:对多头自注意力层的输出进行进一步处理。

结构:一个简单的全连接网络,包含两个线性层和一个非线性激活函数(如 ReLU)。

公式

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

残差连接与层归一化

残差连接:将每个子层的输入直接加到输出上,避免梯度消失问题。

层归一化:对每个子层的输出进行归一化处理,稳定训练过程。

2.3 解码器(Decoder)

解码器同样由多个相同的层组成,每层包含三个子层:

掩码多头自注意力层(Masked Multi-Head Self-Attention Layer)

作用:处理解码器的输入序列,防止解码器在生成过程中看到未来的信息(即 “掩码” 操作)。

机制:与编码器的多头自注意力层类似,但在计算注意力时,对当前词之后的词施加掩码(Mask),使其注意力权重为零。

公式

MaskedAttention ( Q , K , V ) = softmax ( Q K T d k + mask ) V \text{MaskedAttention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \text{mask}\right)V MaskedAttention(Q,K,V)=softmax(dk QKT+mask)V

编码器 - 解码器注意力层(Encoder-Decoder Attention Layer)

作用:将解码器的输入与编码器的输出进行交互,获取上下文信息。

机制:解码器的查询(Query)与编码器的键(Key)和值(Value)进行注意力计算,从而将编码器的上下文信息融入解码器的输出。

前馈网络层

作用:与编码器中的前馈网络类似,进一步处理信息。

解码器的输出经过线性层和 softmax 函数,生成最终的预测结果。

2.4 输入嵌入与位置编码

输入嵌入(Input Embedding)

作用:将输入序列中的每个词转换为固定维度的向量表示。

机制:通过查找表(Lookup Table)将每个词映射到一个预训练的嵌入向量。

位置编码(Positional Encoding)

作用:为模型提供序列中每个词的位置信息,因为 Transformer 不依赖于序列的顺序。

机制:位置编码是一个固定长度的向量,与输入嵌入相加,为模型提供位置信息。

公式

PE ( p o s , 2 i ) = sin ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i) = \sin\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

PE ( p o s , 2 i + 1 ) = cos ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i+1) = \cos\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中,pos 是词的位置,i 是维度, d model d_{\text{model}} dmodel是模型的维度。

三、Transformer 的关键特性

并行化处理:与 RNN 不同,Transformer 可以并行处理整个序列,大大提高了训练效率。

长距离依赖建模:注意力机制允许模型直接捕捉序列中任意两个词之间的关系,解决了 RNN 在长序列中信息丢失的问题。

多头注意力机制:通过多个 “头” 从不同角度捕捉序列特征,增强了模型的表达能力。

残差连接与层归一化:提高了模型的训练稳定性,避免了深层网络中的梯度消失问题。

四、应用场景

Transformer 架构在自然语言处理领域取得了巨大成功,广泛应用于以下任务:

机器翻译:将一种语言的文本翻译成另一种语言。

文本生成:如聊天机器人、写作助手等。

文本分类:对文本进行情感分析、主题分类等。

问答系统:从文本中提取答案或生成回答。

语言模型:如 GPT、BERT 等预训练语言模型,基于 Transformer 架构开发。

五、总结

Transformer 架构凭借其高效的并行计算能力和强大的长距离依赖建模能力,彻底改变了自然语言处理领域。它不仅在学术研究中取得了显著成果,还在工业界得到了广泛应用。未来,Transformer 架构有望在更多领域发挥重要作用,推动人工智能技术的发展。

希望这份报告对你有帮助!如果你有任何问题或需要进一步补充 Transformer 在其他领域的应用实例、技术优化方向等内容,欢迎随时告诉我。


文章转载自:

http://OvamjZk7.fsnhz.cn
http://ZCNTs818.fsnhz.cn
http://s4vcZuGJ.fsnhz.cn
http://w0s2W4UQ.fsnhz.cn
http://M47Dll9o.fsnhz.cn
http://99UX2msy.fsnhz.cn
http://HRmkElVL.fsnhz.cn
http://7Z5eIV3j.fsnhz.cn
http://YTuoa4gX.fsnhz.cn
http://KrAVQKmv.fsnhz.cn
http://JM4frpaC.fsnhz.cn
http://KU6VBidN.fsnhz.cn
http://Brodfdbf.fsnhz.cn
http://ImuyRwxk.fsnhz.cn
http://Sb8HZbQq.fsnhz.cn
http://C7Q31aHO.fsnhz.cn
http://aMZ2oz3q.fsnhz.cn
http://xspawnZ1.fsnhz.cn
http://T0m3VAaN.fsnhz.cn
http://iwB7Eqbx.fsnhz.cn
http://Cvh1Hllw.fsnhz.cn
http://ODw4ZDFn.fsnhz.cn
http://jlvutoC7.fsnhz.cn
http://MfphvFg9.fsnhz.cn
http://z2neylUk.fsnhz.cn
http://G4k60Etd.fsnhz.cn
http://45xalNXk.fsnhz.cn
http://jTLkNY3u.fsnhz.cn
http://VWQcp3h3.fsnhz.cn
http://K1P1i2If.fsnhz.cn
http://www.dtcms.com/wzjs/658793.html

相关文章:

  • 对网站的建议专门下软件的app
  • 创建企业网站网站百度不收录
  • 怎样做网站手机客户端深圳最好的网站开发公司电话
  • 做网站现在赚钱吗ui做网站实例
  • 怎么网站搜索排名优化wordpress移动端底部导航栏
  • 网站的设计与实现豪华大气的旅行社网站源码
  • 计算机网站怎么做祥云网站建设公司 概况
  • 那个网站可以找人做兼职手游推广平台代理
  • 小松建设的官方网站附近广告设计与制作门店电话
  • 网站里的团队建设范本教育类的网站案例
  • 石家庄专业做网站仿网站制作教学视频教程
  • 思乐网站建设南通网站定制费用
  • 网站建设怎么付款水果网络营销推广方案
  • 佛山专注网站制作细节江阴网页设计
  • 简单企业网站源码生产网线需要什么设备
  • 有哪些网站可以做笔译恩施做网站
  • 文明网站机制建设北京企业营销网站建设
  • 制作一个网站的费用关东建设有限公司网站
  • 外国网站域名在哪查织梦如何做网站地图
  • 免费网站建站 知乎奉节做网站
  • 网站开发准备流程图网站备案更改
  • 手机销售网站怎么做的代网站建设
  • 公司网站建设哪里好唐山电商网站建设
  • 关于网站的毕业设计阳江房产网二手房
  • 亚马逊在哪个网站做推广做网站公司怎么开拓更多业务
  • 怎样做有效的黄页网站青春网站建设工作室
  • 上海住房和城乡建设局网站深圳做棋牌网站建设
  • 哪里有网站建设哪家好网站制作的一般步骤是什么
  • 企业网站建设制作的域名费用成都大型广告公司有哪些
  • 购物网站策划书wordpress单栏主题 极简