做商务网站简述网站建设过程步骤
以下是通过 Langfuse 实现RAG(检索增强生成)系统全链路监控与分析的完整样例,包含 代码实现、数据记录、看板配置 和 实际应用场景:
一、基础配置与初始化
1. 安装与设置
pip install langfuse
from langfuse import Langfuse# 初始化(从环境变量读取LANGFUSE_KEY/SECRET)
langfuse = Langfuse(host="https://cloud.langfuse.com", # 或自托管地址public_key="pk-lf-xxx",secret_key="sk-lf-xxx"
)
2. 追踪RAG全流程
def rag_pipeline(query: str):# 创建Trace(单次请求的根记录)trace = langfuse.trace(name="rag-query",input={"question": query},metadata={"env": "production", "user_id": "u123"})# --- 检索阶段 ---retrieval_span = trace.span(name="retrieval")contexts = retrieve(query) # 假设返回Top-3文档retrieval_span.end(output=contexts,metadata={"model": "bge-large", "top_k": 3})# --- 生成阶段 ---generation_span = trace.span(name="generation")