当前位置: 首页 > wzjs >正文

地下城钓鱼网站怎么做织梦做旅游网站

地下城钓鱼网站怎么做,织梦做旅游网站,硅藻泥网站怎么做,seo价格EMD-SSA-VMD-LSTM混合模型 一、环境配置与依赖二、数据生成(示例数据)三、多级信号分解1. 经验模态分解(EMD)2. 奇异谱分析(SSA)3. 变分模态分解(VMD) 四、数据预处理1. 归一化处理2…

EMD-SSA-VMD-LSTM混合模型

  • 一、环境配置与依赖
  • 二、数据生成(示例数据)
  • 三、多级信号分解
    • 1. 经验模态分解(EMD)
    • 2. 奇异谱分析(SSA)
    • 3. 变分模态分解(VMD)
  • 四、数据预处理
    • 1. 归一化处理
    • 2. 数据集构建
  • 五、混合LSTM模型
    • 1. 模型架构
    • 2. 模型训练
  • 六、预测与结果重构
    • 1. 多步预测
    • 2. 结果反归一化
  • 七、性能评估与可视化
    • 1. 评估指标
    • 2. 结果可视化
  • 八、完整数据流说明
  • 九、参数调优建议
  • 十、扩展方向
  • 源码说明

以下是使用Python实现EMD-SSA-VMD-LSTM混合模型进行时间序列预测的完整代码,结合经验模态分解(EMD)、奇异谱分析(SSA)、变分模态分解(VMD)与LSTM深度学习模型。该方案适用于复杂非平稳信号的预测任务,代码包含数据生成、多级分解、模型构建和结果可视化。


一、环境配置与依赖

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PyEMD import EMD
from vmdpy import VMD
from scipy.linalg import hankel, svd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# 设置随机种子保证可复现性
np.random.seed(42)
torch.manual_seed(42)

二、数据生成(示例数据)

def generate_complex_signal(length=1000):"""生成含多成分的非平稳信号"""t = np.linspace(0, 10, length)# 趋势项trend = 0.02 * t**2 + 0.1 * t# 周期成分seasonal1 = 1.5 * np.sin(2 * np.pi * 0.8 * t)seasonal2 = 0.8 * np.cos(2 * np.pi * 2.5 * t)# 脉冲噪声impulse = np.zeros(length)impulse[np.random.choice(length, 20)] = np.random.uniform(-3, 3, 20)# 高斯噪声noise = 0.3 * np.random.randn(length)return trend + seasonal1 + seasonal2 + impulse + noise# 生成数据并可视化
data = generate_complex_signal()
plt.figure(figsize=(12,4))
plt.plot(data, color='darkblue')
plt.title("Generated Non-stationary Signal")
plt.show()

三、多级信号分解

1. 经验模态分解(EMD)

def emd_decomposition(signal):emd = EMD()imfs = emd(signal)return imfsimfs_emd = emd_decomposition(data)
print(f"EMD分解得到 {imfs_emd.shape[0]} 个IMF分量")

2. 奇异谱分析(SSA)

def ssa_decomposition(signal, window=30, rank=3):"""奇异谱分析核心函数"""# 构建轨迹矩阵L = windowK = len(signal) - L + 1X = hankel(signal[:L], signal[L-1:])# 奇异值分解U, S, VT = svd(X, full_matrices=False)# 选择主成分重构X_rank = (U[:, :rank] * S[:rank]) @ VT[:rank, :]# 对角平均化reconstructed = np.zeros_like(signal)for i in range(len(signal)):X_diag = np.diagonal(X_rank, offset=-(L-1-i))reconstructed[i] = X_diag.mean() if X_diag.size > 0 else 0return reconstructed# 对每个EMD-IMF执行SSA分解
components_ssa = []
for imf in imfs_emd:ssa_comp = ssa_decomposition(imf, window=30, rank=3)components_ssa.append(ssa_comp)

3. 变分模态分解(VMD)

def vmd_decomposition(signal, alpha=2000, K=4):u, _, _ = VMD(signal, alpha=alpha, tau=0, K=K, DC=0, init=1, tol=1e-7)return u# 对SSA结果进行VMD分解
final_components = []
for comp in components_ssa:vmd_comps = vmd_decomposition(comp, K=2)final_components.extend(vmd_comps)# 合并所有分量
all_components = np.vstack(final_components)
print(f"总分解分量数: {all_components.shape[0]}")

四、数据预处理

1. 归一化处理

scalers = []
scaled_components = []
for comp in all_components:scaler = MinMaxScaler(feature_range=(-1, 1))scaled = scaler.fit_transform(comp.reshape(-1, 1)).flatten()scaled_components.append(scaled)scalers.append(scaler)scaled_components = np.array(scaled_components)

2. 数据集构建

class HybridDataset(Dataset):def __init__(self, components, lookback=60, horizon=1):self.components = componentsself.lookback = lookbackself.horizon = horizondef __len__(self):return self.components.shape[1] - self.lookback - self.horizon + 1def __getitem__(self, idx):x = self.components[:, idx:idx+self.lookback].T  # (lookback, n_components)y = self.components[:, idx+self.lookback:idx+self.lookback+self.horizon].Treturn torch.FloatTensor(x), torch.FloatTensor(y)lookback = 60
horizon = 1
dataset = HybridDataset(scaled_components, lookback, horizon)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

五、混合LSTM模型

1. 模型架构

class MultiScaleLSTM(nn.Module):def __init__(self, input_size, hidden_size=128, output_size=1):super().__init__()# 特征提取层self.lstm1 = nn.LSTM(input_size, hidden_size, batch_first=True)self.dropout1 = nn.Dropout(0.3)# 时序预测层self.lstm2 = nn.LSTM(hidden_size, hidden_size//2, batch_first=True)self.dropout2 = nn.Dropout(0.2)# 输出层self.fc = nn.Linear(hidden_size//2, output_size)def forward(self, x):# 输入形状: (batch_size, seq_len, input_size)out, (h, c) = self.lstm1(x)out = self.dropout1(out)out, _ = self.lstm2(out)out = self.dropout2(out[:, -1, :])return self.fc(out)

2. 模型训练

model = MultiScaleLSTM(input_size=scaled_components.shape[0])
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)# 训练循环
for epoch in range(100):total_loss = 0for x, y in dataloader:optimizer.zero_grad()pred = model(x)loss = criterion(pred, y.squeeze())loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}/100 | Loss: {total_loss/len(dataloader):.4f}")

六、预测与结果重构

1. 多步预测

def recursive_forecast(model, initial_seq, steps=50):current_seq = initial_seq.clone()predictions = []for _ in range(steps):with torch.no_grad():pred = model(current_seq.unsqueeze(0))predictions.append(pred.numpy()[0][0])# 更新输入序列current_seq = torch.cat([current_seq[1:], pred.unsqueeze(0)])return np.array(predictions)# 获取初始序列
test_input = scaled_components[:, -lookback:]
test_input = torch.FloatTensor(test_input.T)  # (lookback, n_components)# 执行预测
pred_steps = 50
prediction = recursive_forecast(model, test_input, pred_steps)

2. 结果反归一化

# 重构所有分量预测
pred_components = []
for i in range(len(scalers)):pred_scaled = prediction * 0  # 初始化pred_scaled[i::len(scalers)] = prediction  # 分量位置插值pred_components.append(scalers[i].inverse_transform(pred_scaled.reshape(-1, 1)))# 合成最终结果
final_pred = np.sum(pred_components, axis=0).flatten()# 获取真实值
true_values = data[-pred_steps:]

七、性能评估与可视化

1. 评估指标

mae = mean_absolute_error(true_values, final_pred)
rmse = np.sqrt(mean_squared_error(true_values, final_pred))
print(f"MAE: {mae:.4f}")
print(f"RMSE: {rmse:.4f}")

2. 结果可视化

plt.figure(figsize=(12,6))
plt.plot(true_values, label='True', marker='o', linestyle='--')
plt.plot(final_pred, label='Predicted', marker='x', linewidth=2)
plt.fill_between(range(len(final_pred)), final_pred - 1.96*rmse, final_pred + 1.96*rmse, alpha=0.2, color='orange')
plt.title("EMD-SSA-VMD-LSTM Multi-step Prediction")
plt.legend()
plt.grid(True)
plt.show()

八、完整数据流说明

步骤技术实现数学表达
信号生成合成趋势项+周期项+噪声 x ( t ) = ∑ i = 1 n a i f i ( t ) + ϵ ( t ) x(t) = \sum_{i=1}^{n} a_i f_i(t) + \epsilon(t) x(t)=i=1naifi(t)+ϵ(t)
EMD分解自适应分解非平稳信号 x ( t ) = ∑ k = 1 K c k ( t ) + r ( t ) x(t) = \sum_{k=1}^{K} c_k(t) + r(t) x(t)=k=1Kck(t)+r(t)
SSA分解轨迹矩阵SVD分解 X = U Σ V T \mathbf{X} = \mathbf{U\Sigma V}^T X=UΣVT
VMD分解变分模态优化分解 min ⁡ { u k } , { ω k } ∑ k ∥ ∂ t [ u k ( t ) e − j ω k t ] ∥ 2 2 \min_{\{u_k\},\{\omega_k\}} \sum_k \|\partial_t[u_k(t)e^{-j\omega_k t}]\|_2^2 {uk},{ωk}minkt[uk(t)ejωkt]22
特征融合多分量时序对齐 X stack = [ C 1 T ; C 2 T ; … ; C n T ] \mathbf{X}_{\text{stack}} = [\mathbf{C}_1^T; \mathbf{C}_2^T; \dots; \mathbf{C}_n^T] Xstack=[C1T;C2T;;CnT]
LSTM建模门控机制时序建模 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)
结果重构逆归一化加权求和 y ^ = ∑ k = 1 K scaler k − 1 ( c ^ k ) \hat{y} = \sum_{k=1}^{K} \text{scaler}_k^{-1}(\hat{c}_k) y^=k=1Kscalerk1(c^k)

九、参数调优建议

参数优化策略典型值范围
EMD最大IMF数根据信号复杂度调整5-10
SSA窗口长度取1/3周期长度20-50
VMD模态数(K)频谱分析确定3-6
LSTM隐藏层防止过拟合64-256
学习率余弦退火调整1e-4~1e-3
输入序列长度覆盖主要周期60-120

十、扩展方向

  1. 自适应分解

    # 自动确定VMD的K值
    from vmdpy import VMD
    def auto_vmd(signal, max_K=8):for K in range(3, max_K+1):u, _, _ = VMD(signal, alpha=2000, K=K)if np.any(np.isnan(u)):return K-1return max_K
    
  2. 概率预测

    # 修改输出层为分位数回归
    self.fc = nn.Linear(hidden_size//2, 3)  # 输出3个分位数
    
  3. 在线学习

    # 增量训练机制
    def online_update(model, new_data):model.train()optimizer.zero_grad()outputs = model(new_data)loss = criterion(outputs, targets)loss.backward()optimizer.step()
    

源码说明

  1. 数据兼容性

    • 支持CSV输入:修改generate_complex_signal()pd.read_csv()
    • 多变量扩展:调整输入维度为(n_features, seq_len)
  2. 性能优化

    • 启用CUDA加速:model.to('cuda')
    • 使用混合精度训练:scaler = torch.cuda.amp.GradScaler()
  3. 工业级部署

    # 模型保存与加载
    torch.save(model.state_dict(), 'multiscale_lstm.pth')
    model.load_state_dict(torch.load('multiscale_lstm.pth'))
    

该方案通过三级分解(EMD-SSA-VMD)充分提取信号多尺度特征,结合深度LSTM建模复杂时序依赖,在非平稳信号预测中展现出显著优势。实际应用时需根据数据特性调整分解参数与模型结构,并通过误差分析持续优化。


文章转载自:

http://dSKi76lB.yrbLz.cn
http://d4LFnXhJ.yrbLz.cn
http://QQVKD0pK.yrbLz.cn
http://hE2hiMDF.yrbLz.cn
http://I8Z52kxm.yrbLz.cn
http://2qj8B70E.yrbLz.cn
http://oTM00Gn6.yrbLz.cn
http://qJLC5AsL.yrbLz.cn
http://j0VA9etv.yrbLz.cn
http://e0V8aYco.yrbLz.cn
http://uo7IrujM.yrbLz.cn
http://PiIVahNL.yrbLz.cn
http://1LBAV7cu.yrbLz.cn
http://f4P02ZFN.yrbLz.cn
http://D8aH5fcS.yrbLz.cn
http://Wvc18gJc.yrbLz.cn
http://sW6ZtNt9.yrbLz.cn
http://8fnjIjNg.yrbLz.cn
http://9YimQXeI.yrbLz.cn
http://iVlryzhJ.yrbLz.cn
http://2Ge6Ql7k.yrbLz.cn
http://zujlSWzJ.yrbLz.cn
http://a2HqKKB7.yrbLz.cn
http://qc6bBaPg.yrbLz.cn
http://hGPRED8o.yrbLz.cn
http://ZhJUveZ9.yrbLz.cn
http://MWwLns1n.yrbLz.cn
http://eIbj6eiC.yrbLz.cn
http://w6FTtpUr.yrbLz.cn
http://vnV6sPUs.yrbLz.cn
http://www.dtcms.com/wzjs/637482.html

相关文章:

  • 德邦物流公司现代物流网站建设与开发标书制作代做公司
  • 网站开发计什么科目wordpress客户使用的后端
  • 做网站时链接的网页无法显示搭建网站需要学什么软件
  • 网站被做301跳转了怎么办新版wordpress没有关键词
  • 一个人制作网站智慧团建网站登录平台pc端
  • 银川网站建设0951手机app下载网
  • 备案个人网站名称wap网站软件
  • 建立自己的网站步骤网站 平均加载时间
  • 设计logo网站免费国外如何在各大网站发布信息
  • 三五互联网站建设怎么样莱芜吧莱芜贴吧
  • 工商局网站做年报制作网站首先做的是
  • 网站推广软件工具设计房子装修效果图软件
  • 海口建设局网站h5网站建设代理
  • 农业网站源码带数据空间购买网站
  • 优秀网站建设模版交互设计专业学什么
  • 广州做网站开发网站过度优化
  • 企业网站建立之前必须首先确定河南建设工程信息网官网洛阳至信阳省道
  • 公司网站可以做服务器吗群晖自行安装wordpress
  • 宁波网站建设制作价格网站换模板要怎么做
  • 吴江市中云建设监理有限公司网站长沙中小企业网站建设
  • 安徽城乡建设厅网站中国做网站的公司有哪些
  • 深圳外贸公司网站定制网站制作费用
  • 做数学网站php网上商城系统
  • 360任意看地图网站网站建设运行
  • 站长网站建设达州市网站建设
  • 企业网站关键词应如何优化常州网站设计公司
  • 网站名称可以更换吗c 网站开发入门视频
  • 青岛网站制作公司网络网赌代理
  • 呼市赛罕区信息网站做一顿饭工作wordpress gzip
  • 网站运营 宣传团队建设做网站PV