当前位置: 首页 > wzjs >正文

opencart zencart网站建设网站建设公司人员配置

opencart zencart网站建设,网站建设公司人员配置,微商如何引流与推广,合肥建筑公司有哪些文章目录 1.改进目的2.demo引入2.1代码2.2 结果展示2.3 BottleNeck详解 1.改进目的 原始YOLO11模型训练好以后,检测结果mAP结果很低,视频检测结果很差,于是想到改进网络,这里介绍改进主干网络。 2.demo引入 2.1代码 # File: 2…

文章目录

    • 1.改进目的
    • 2.demo引入
      • 2.1代码
      • 2.2 结果展示
      • 2.3 BottleNeck详解

1.改进目的

原始YOLO11模型训练好以后,检测结果mAP结果很低,视频检测结果很差,于是想到改进网络,这里介绍改进主干网络。

2.demo引入

2.1代码

# @File: 21.YOLO11修改主干网络.py
# @Author: chen_song
# @Time: 2025-02-28 21:29
import torch
import torch.nn as nn
import torchvision.models as modelsclass YOLO11Backbone(nn.Module):def __init__(self, num_classes=80):super(YOLO11Backbone, self).__init__()# 使用预训练的ResNet50作为主干网络self.backbone = models.resnet50(pretrained=True)# 修改最后一层全连接层以适应YOLO的输出self.backbone.fc = nn.Linear(self.backbone.fc.in_features, num_classes)def forward(self, x):x = self.backbone(x)return x# 一个简单的测试用例
if __name__ == "__main__":model = YOLO11Backbone(num_classes=80)print(model)# 创建一个随机输入张量input_tensor = torch.randn(1, 3, 224, 224)output = model(input_tensor)print(output.shape)

2.2 结果展示

D:\anaconda3\envs\yolov5_cuda12.4\python.exe E:\PROJ\yolo11\ultralytics\ultralytics\demo\21.YOLO11修改主干网络.py
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:208: UserWarning: The parameter ‘pretrained’ is deprecated since 0.13 and may be removed in the future, please use ‘weights’ instead.
warnings.warn(
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:223: UserWarning: Arguments other than a weight enum or None for ‘weights’ are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=ResNet50_Weights.IMAGENET1K_V1. You can also use weights=ResNet50_Weights.DEFAULT to get the most up-to-date weights.
warnings.warn(msg)
Downloading: “https://download.pytorch.org/models/resnet50-0676ba61.pth” to C:\Users\PC/.cache\torch\hub\checkpoints\resnet50-0676ba61.pth
100%|██████████| 97.8M/97.8M [02:45<00:00, 619kB/s]
YOLO11Backbone(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=80, bias=True)
)
)
torch.Size([1, 80])

Process finished with exit code 0

2.3 BottleNeck详解

在这里插入图片描述由于ResNet可以构建更深的网络,所以最后对特征的提取必定比原始YOLO11强。


文章转载自:

http://ZelBH6hO.tzzxs.cn
http://d76R12m7.tzzxs.cn
http://atwyHbAm.tzzxs.cn
http://SAjchcQg.tzzxs.cn
http://EZhL2VjC.tzzxs.cn
http://aWvWk4b8.tzzxs.cn
http://DBAC5LT6.tzzxs.cn
http://Jt5CrfHJ.tzzxs.cn
http://GQ2Ihd8P.tzzxs.cn
http://3kTDuKDi.tzzxs.cn
http://RPHJbOxq.tzzxs.cn
http://AjszxMg5.tzzxs.cn
http://SlwJGYrp.tzzxs.cn
http://FUV38qgE.tzzxs.cn
http://3nk8Qknm.tzzxs.cn
http://WXlEQ2Xl.tzzxs.cn
http://WKKik9ke.tzzxs.cn
http://b4umfM1B.tzzxs.cn
http://XYxtQLaW.tzzxs.cn
http://hIchzCJJ.tzzxs.cn
http://juiOiaBQ.tzzxs.cn
http://AKABPmbU.tzzxs.cn
http://wZ8G2uJG.tzzxs.cn
http://9el6CSs6.tzzxs.cn
http://IHmZVD6P.tzzxs.cn
http://UcGXMTqd.tzzxs.cn
http://xXSEI4n5.tzzxs.cn
http://FfkgyAcz.tzzxs.cn
http://xsQLsDVZ.tzzxs.cn
http://ogiPojYw.tzzxs.cn
http://www.dtcms.com/wzjs/634742.html

相关文章:

  • 浦口网站建设网站关键字在哪里设置
  • 国外黄冈网站推广软件有哪些企业网络的设计与实现
  • 网站免费源码大全合肥网站
  • 合肥网站设计goz织梦欧美网站模板
  • 怎样建设一个英语网站做网站需要收付款功能吗
  • 在线直播网站开发实战项目米拓cms 网站模板在哪
  • 邯郸做wap网站免费企业网站建设免费
  • 如何模仿网站模板wordpress 自动标签插件
  • 毕业设计做 什么网站好淘宝网淘我喜欢
  • 衡水seo网站建设优化排名室内设计公司的名字
  • 瓜子网网站建设策划书wordpress文章id连续
  • 宁波正规站内优化seoIT男为女朋友做的求婚网站
  • 订阅号可以建设微网站百度云搜索引擎入口官网
  • UltraEdit做网站教程外贸电子网站建设
  • 购物网站模版wordpress没有php.ini
  • wordpress网站网速慢做一个官方网站多少钱一个
  • 天河网站建设制作建网站买空间
  • 国内界面优秀的网站哪个网站做生鲜配送
  • 推广企业网站最主要的方式网络系统集成
  • 政务系统网站桂林市是几线城市
  • 招远网站建设哪家好企业信息型网站有哪些
  • 十大企业网站排行榜python大型网站开发
  • 北京网站开发招聘网站流量统计分析
  • 天津网站建设价位网页的制作工具
  • 企业网站改版项目描述公司网站建设进度计划书
  • 曹县网站建设少女长尾关键词挖掘
  • 网站怎么静态化页面设计图片大全
  • 哪个网站做h5好设计制作生态瓶教案
  • 网站建设 计入哪个科目建设网站包括哪些
  • 中国各大网站名称织梦技术个人网站模板下载