当前位置: 首页 > wzjs >正文

泉州网站建设哪家专业seo营销外包

泉州网站建设哪家专业,seo营销外包,温州seo霸屏,wordpress存储视频教程YOLOv5-Seg 是 Ultralytics 官方基于 YOLOv5 目标检测模型的分割分支,能够在 目标检测 的基础上进行 实例分割。相比传统的分割模型(如 Mask R-CNN),YOLOv5-Seg 具备 速度快、结构轻量、容易部署 等优势。 本教程将详细介绍 YOLO…

YOLOv5-Seg 是 Ultralytics 官方基于 YOLOv5 目标检测模型的分割分支,能够在 目标检测 的基础上进行 实例分割。相比传统的分割模型(如 Mask R-CNN),YOLOv5-Seg 具备 速度快、结构轻量、容易部署 等优势。

本教程将详细介绍 YOLOv5-Seg 的 安装、训练、推理、输出格式解析以及后处理方法,帮助你快速掌握 YOLOv5-Seg。

1. YOLOv5-Seg 简介

YOLOv5-Seg 采用 Anchor-Free 机制,输出 目标的边界框 (Bounding Box)、类别 (Class) 和 分割掩码 (Segmentation Mask)。它的核心思想是在目标检测的基础上增加一个额外的分割头,从而实现 实例分割

主要特点:

  • 端到端实例分割:不需要额外的后处理步骤,直接输出目标的掩码。
  • 轻量级:相比 Mask R-CNN,推理速度更快,适合实时应用。
  • 与 YOLOv5 兼容:使用相同的数据格式和训练方式,迁移成本低。

2. YOLOv5-Seg 安装

首先,克隆 YOLOv5 仓库并安装依赖项:

# 克隆 YOLOv5 仓库
git clone https://github.com/ultralytics/yolov5.git
cd yolov5# 安装依赖
pip install -r requirements.txt

3. 训练 YOLOv5-Seg

YOLOv5-Seg 的数据格式与 YOLOv5 目标检测类似,但需要额外提供 分割掩码 (masks)

3.1 数据格式

YOLOv5-Seg 采用 COCO 格式或 YOLO 格式的数据集,数据组织方式如下:

dataset/├── images/│   ├── train/│   ├── val/│   ├── test/├── labels/│   ├── train/│   ├── val/│   ├── test/

每个 labels/*.txt 文件包含目标的信息,格式如下:

<class_id> <x_center> <y_center> <width> <height> <polygon_points>

polygon_points 是目标的 归一化分割轮廓点,用于生成分割掩码。

3.2 训练命令

python segment/train.py --weights yolov5s-seg.pt --data coco.yaml --epochs 300

其中:

  • yolov5s-seg.pt:预训练模型
  • coco.yaml:数据集配置文件
  • epochs:训练轮数

4. 推理(Inference)

使用训练好的模型进行推理,处理单张图片:

python segment/predict.py --weights yolov5s-seg.pt --source image.jpg

处理视频:

python segment/predict.py --weights yolov5s-seg.pt --source video.mp4

5. YOLOv5-Seg 输出格式解析

YOLOv5-Seg 的推理结果主要包含 目标类别、边界框、置信度 和 掩码,通常返回一个 torch.Tensor 数组,格式如下:

[array([x1, y1, x2, y2, conf, class_id, mask1, mask2, ...])]

其中:

  • (x1, y1, x2, y2):目标的 边界框坐标
  • conf:目标的 置信度
  • class_id:目标的 类别 ID
  • mask:目标的 掩码,是一个固定大小的 32x32 归一化分割掩码,需要进行反向映射恢复到原图大小。

6. YOLOv5-Seg 后处理

为了将 YOLOv5-Seg 的输出转换成可用的 二值掩码 (Binary Mask),需要进行 插值和阈值处理

6.1 还原掩码到原图尺寸

YOLOv5-Seg 采用 32x32 的小尺寸掩码,需要插值恢复到目标的 真实边界框尺寸

意思是输出的mask是检测框bbox的mask,表明了检测框范围内哪些像素是分割项目。所以需要先将32*32缩放到bbox实际shape,然后再转换到全图中。

import torch
import cv2
import numpy as npdef process_mask(mask, bbox, img_shape):"""处理 YOLOv5-Seg 的 32x32 掩码,恢复到原图大小"""x1, y1, x2, y2 = bbox  # 边界框mask = mask.reshape(32, 32)  # 转换为 32x32mask = cv2.resize(mask, (x2 - x1, y2 - y1))  # 插值放大binary_mask = (mask > 0.5).astype(np.uint8)  # 二值化处理# 创建全图掩码full_mask = np.zeros(img_shape[:2], dtype=np.uint8)full_mask[y1:y2, x1:x2] = binary_maskreturn full_mask

6.2 叠加掩码到原图

def overlay_mask(image, mask):"""在原图上叠加分割掩码"""colored_mask = np.zeros_like(image)colored_mask[:, :, 1] = mask * 255  # 绿色掩码overlayed_image = cv2.addWeighted(image, 0.7, colored_mask, 0.3, 0)return overlayed_image

6.3 运行完整的后处理流程

# 读取图片
image = cv2.imread("image.jpg")# 解析 YOLOv5-Seg 结果
for det in results.pred[0]:x1, y1, x2, y2, conf, class_id, *mask = det.cpu().numpy()mask = np.array(mask)full_mask = process_mask(mask, (int(x1), int(y1), int(x2), int(y2)), image.shape)image = overlay_mask(image, full_mask)# 显示结果
cv2.imshow("Segmented Image", image)
cv2.waitKey(0)

7. 总结

本教程详细介绍了 YOLOv5-Seg安装、训练、推理、输出格式和后处理。通过本教程,你可以:

✅ 理解 YOLOv5-Seg 的 输出格式
✅ 进行 推理并解析输出数据
恢复掩码到原图 并进行可视化

如果你希望更简单的分割方案,也可以尝试 YOLOv8-Seg,它在 YOLOv5-Seg 的基础上做了进一步优化。

希望这篇教程对你有帮助!🎯🔥

http://www.dtcms.com/wzjs/63106.html

相关文章:

  • 网站做优化的必要性平台推广费用
  • 网站定时数据切换怎么做的教程推广优化网站排名
  • 有没有网站可以做地图百度站长工具网站提交
  • 酒店网站开发软文广告属于什么营销
  • 网站排名seo培训百度下载安装最新版
  • 阿里网站建设营销推广
  • 合肥做双语外贸网站竞价推广的基本流程
  • 在网站上做的h5如何发到微信上站长统计官网
  • 电子产品的网站建设常州百度关键词优化
  • 苏州要服务网站建设优化工作流程
  • php语言做的大网站java成品网站
  • 办公空间设计说明200字域名年龄对seo的影响
  • 如何做网站代码新冠咳嗽一般要咳多少天
  • cms建站系统 java做公司网站
  • 潍坊网站建设wfxtseoseo优化方向
  • 网站开发的目的意义微信朋友圈推广文案
  • 货源之家北京网站优化指导
  • 广东网站建设怎么收费seo短视频网页入口营销
  • 长春好的做网站公司辽宁网站seo
  • 网站套模版企业qq邮箱
  • 瑜伽网站模版为什么外包会是简历污点
  • 临沂做网站上海网站建设公司
  • 论坛型网站建设必应搜索网站
  • 做网站需要学习什么知识友情链接qq群
  • 做网站和APP需要注册公司吗免费企业网站建设
  • 汕头免费建站公司天津seo建站
  • 网站怎么做百度认证深圳头条新闻
  • wordpress资源消耗正规网站优化公司
  • seo网络营销优化百度自动优化
  • 如何建网站win7优化大师免安装版