当前位置: 首页 > wzjs >正文

网站推广是干嘛的电商gpm是什么意思

网站推广是干嘛的,电商gpm是什么意思,100网站建设,济南做网站推广有哪些公司1. 简介 工业表计(如压力表、电表、气表等)在工控系统、能源管理等领域具有重要应用。然而,传统人工抄表不仅工作量大、效率低,而且容易产生数据误差。近年来,基于深度学习的目标检测方法在工业检测中展现出极大优势&…

1. 简介

工业表计(如压力表、电表、气表等)在工控系统、能源管理等领域具有重要应用。然而,传统人工抄表不仅工作量大、效率低,而且容易产生数据误差。近年来,基于深度学习的目标检测方法在工业检测中展现出极大优势,其中YOLO(You Only Look Once)系列模型因其端到端的检测流程和实时性备受关注。本文以YOLO11为基础,构建了一套完整的表计检测系统,实现对表计区域的自动识别与裁剪,为后续的读数识别奠定基础。

2. 系统架构与实现方法

本系统主要分为两个模块:表计检测模型训练模块与检测后预测模块。下文分别介绍这两个模块的实现细节。

2.1 表计检测模型训练

在训练阶段,系统利用YOLO11模型对采集到的表计图像进行目标检测模型训练,主要步骤如下:

  1. 模型构建与权重加载
    利用Ultralytics的YOLO库,根据自定义的配置文件(yolo11.yaml)构建模型,并加载预训练权重(yolo11n.pt)。

    from ultralytics import YOLO
    import warnings
    warnings.filterwarnings("ignore")if __name__ == '__main__':# 模型配置文件与预训练权重路径yolo_yaml = "/root/cv/task_0/yolo_model/yolo11.yaml"yolo_pt = "/root/cv/task_0/yolo_model/yolo11n.pt"data_yaml = "/root/autodl-tmp/meter_data/meter_detect/dataset.yaml"# 构建模型并加载预训练权重model = YOLO(yolo_yaml)model.load(yolo_pt)# 开始训练,设置训练数据、迭代次数及图像尺寸results = model.train(data=data_yaml, epochs=200, imgsz=640)
    

    以上代码展示了如何通过加载模型配置与权重,利用自定义数据集进行200个epoch的训练。数据集的配置文件中包含了表计的标注信息,确保模型能够在多样化环境下学习到稳定的表计特征。

  2. 数据预处理与增强
    为了提升模型在复杂场景下的泛化能力,对原始数据进行了旋转、缩放、模糊等数据增强操作,增强模型对光照、遮挡等干扰因素的鲁棒性。

2.2 表计检测预测模块

在预测阶段,训练好的模型用于对新的表计图像进行检测,主要流程包括加载模型、对输入图像进行检测、裁剪出目标区域及保存检测结果。代码实现如下:

import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
from ultralytics import YOLO# 加载训练好的自定义模型
model = YOLO('/root/cv/task_0/runs/detect/train5/weights/best.pt')# 指定保存预测结果的目录
output_dir = '/root/cv/test/task_0_result'
os.makedirs(output_dir, exist_ok=True)# 对单张图片进行预测
image_path = '/root/cv/test/detected_meter/test.jpg'
results = model(image_path, conf=0.60, save=False)# 读取原始图像并转换为RGB格式(用于显示)
frame = cv2.imread(image_path)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)# 遍历检测结果,提取目标边界框并保存目标图像
for idx, result in enumerate(results):# 获取检测结果中的边界框数据boxes = result.boxes.cpu().numpy()for i, box in enumerate(boxes.data):l, t, r, b = box[:4].astype(np.int32)  # 左、上、右、下坐标conf, id = box[4:]  # 置信度与类别id = int(id)# 裁剪出目标区域图像target_image = frame[t:b, l:r]target_image_path = os.path.join(output_dir, f"target_{idx+1}_{i+1}.jpg")cv2.imwrite(target_image_path, target_image)# 在原图上绘制检测边界框和类别置信度cv2.rectangle(frame_rgb, (l, t), (r, b), (0, 0, 255), 2)cv2.putText(frame_rgb, f"{model.names[id]} {conf * 100:.1f}%", (l, t - 10),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)# 显示检测结果图像
plt.imshow(frame_rgb)
plt.show()# 保存整体检测结果图像
image_name = image_path.split("/")[-1]
output_image_path = os.path.join(output_dir, image_name)
cv2.imwrite(output_image_path, cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2BGR))
print(f"Prediction result saved to: {output_image_path}")

在预测流程中,首先通过加载最佳权重文件获得训练好的模型,然后对目标图像进行预测。检测结果中,模型会返回多个边界框,每个边界框包括位置信息、置信度以及类别信息。根据这些信息,可以对检测区域进行裁剪,保存为单独的图像,同时在原图上绘制检测框和置信度文本以便直观展示检测效果。

3. 实验结果与讨论

3.1 实验设置

  • 数据集:所使用的数据集为采集自工业现场的表计图像,涵盖不同类型、不同角度和多种光照条件下的表计图像。
  • 训练参数:设置训练轮数(epochs)为200,图像尺寸(imgsz)为640,并采用适当的数据增强策略以提高模型鲁棒性。
  • 检测阈值:在预测阶段,置信度阈值设为0.60,确保输出的检测结果较为准确。

3.2 实验结果

通过训练与预测流程,YOLO11模型在表计检测任务中展现了较高的准确性和实时性。模型能够在复杂背景下准确定位表计区域,并将目标区域有效裁剪出来,为后续的表针和刻度关键点检测提供了稳定的输入。检测结果图像中,边界框标注清晰,类别与置信度信息准确显示。
在这里插入图片描述

3.3 讨论与改进方向

尽管实验结果表明系统在表计检测上具有较好表现,但仍存在一些挑战:

  • 小目标检测问题:部分边缘模糊或尺寸较小的表计在复杂背景中检测精度稍低,需要进一步优化模型结构或采用多尺度训练策略。
  • 环境光照影响:在低光或强反射场景下,表计检测效果受到一定影响,数据预处理与增强手段仍需改进。
  • 实时性与部署:考虑到工业现场对实时监控的需求,未来工作中将着重研究模型轻量化与边缘计算方案。

4. 小结

本文基于YOLO11模型实现了工业表计的自动检测,构建了一套从数据预处理、模型训练到目标检测与结果展示的完整流程。实验结果验证了该方法在复杂工业环境下的高效性和准确性,为后续表针和刻度的关键点检测与自动读数识别提供了坚实基础。未来工作将进一步优化检测精度和实时性,以适应更为复杂的工业应用场景。


文章转载自:

http://kPBgRGy3.qwyms.cn
http://q1FYyWw4.qwyms.cn
http://uivB9Q04.qwyms.cn
http://81dq42IO.qwyms.cn
http://VM25KrZa.qwyms.cn
http://U2TCwxU2.qwyms.cn
http://wxU2m7xQ.qwyms.cn
http://SluWO5rh.qwyms.cn
http://fcQRw5kW.qwyms.cn
http://XLjzATd0.qwyms.cn
http://EZNQz1kX.qwyms.cn
http://0LP78JOM.qwyms.cn
http://5rotX3fg.qwyms.cn
http://ZvwQ4K55.qwyms.cn
http://cWQnUp27.qwyms.cn
http://3FjJLoAu.qwyms.cn
http://tvKpA2wt.qwyms.cn
http://1jfjCS1x.qwyms.cn
http://1WCibeqB.qwyms.cn
http://H8fBjS7a.qwyms.cn
http://d9UcGCIW.qwyms.cn
http://iPeIATAj.qwyms.cn
http://N32FeegE.qwyms.cn
http://nw6updXK.qwyms.cn
http://cJ8ImnCE.qwyms.cn
http://NPaYORcu.qwyms.cn
http://7bn1vQwA.qwyms.cn
http://NYQImxcK.qwyms.cn
http://tg3tRq37.qwyms.cn
http://sAfDwhJK.qwyms.cn
http://www.dtcms.com/wzjs/623030.html

相关文章:

  • 湖北网站建设联系电话wordpress怎么做产品列表页
  • 青岛在线制作网站wordpress绑定二级域名插件
  • 自己建的网站百度查找不到西安百度公司
  • 石油化工建设网站wordpress个人版支付
  • 施工方案下载免费网站鞍山网页制作
  • 公交车广告深圳优化网站公司哪家好
  • 做电影网站如何不侵权网站二维码可以做长按识别吗
  • 有些网站打不开怎么解决工程装饰网
  • wordpress 一直跳转到老域名厦门百度seo
  • 做网站多少钱zwnet英文电商网站建设
  • 兰州 电子 网站建设湖南省城乡建设厅网站查证
  • 网站建设流程及构架网站在排版有哪些方法
  • 林州风景网站建设的目的山西建筑工程集团有限公司
  • 常德网站设计H5网站开发工程师
  • 做3d效果图的网站wordpress主题中的psd
  • 遵义市播州区住房和城乡建设局官方网站在线做网站黄
  • yyf做的搞笑视频网站国示范校建设网站
  • vs2010 c 建设网站搭建网站知识
  • 商务网站建设的流程商服网站模板
  • 学校英文网站建设申请诚信档案建设网站
  • 网站建设 人员 年终总结做兼职打字员的网站
  • 杭州定制网站制作wordpress 搭建教程 pdf
  • 如何提高用户和网站的互动性wordpress api开发文档下载
  • 做网站手机号抓取的公司漳州微信网站开发
  • 购物商城网站开发实验报告手机版网址
  • 初中信息技术 网站制作济南建设集团招聘信息网站
  • 西安网站 技术支持牛商网江苏靖江苏源建设有限公司招标网站
  • 怎么看网站是哪家公司做的网站排版
  • 好网站目录中山seo优化
  • 安徽网站建设获客企业wordpress国外主题安装